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NEUROMORPHIC ALGORITHM FOR RAPID 
ONLINE LEARNING AND SIGNAL 

RESTORATION 

CROSS - REFERENCE TO RELATED 
APPLICATION ( S ) 

[ 0001 ] The present application claims priority to U.S. 
Provisional Patent Application Ser . No. 62 / 832,071 , filed 
Apr. 10 , 2019 and entitled " Neuromorphic Algorithm for 
Rapid Online Learning and Signal Restoration , ” which is 
incorporated by reference herein in its entirety . 

STATEMENT OF GOVERNMENT SUPPORT 

[ 0002 ] This invention was made with government support 
under Grant Nos . R01 DC012249 , RO1 DC014367 and R01 
DC014701 of the National Institutes of Health ( NIH ) . The 
government has certain rights in the invention . 

FIELD 

[ 0003 ] The field relates generally to information process 
ing systems , and more particularly to processing algorithms 
implemented in neural networks in such systems . 

BACKGROUND 

source signatures under highly suboptimal conditions . Such 
embodiments overcome significant drawbacks of conven 
tional approaches . 
[ 0006 ] In one embodiment , a computer - implemented 
method of training a neural network to recognize sensory 
patterns comprises obtaining input data , preprocessing the 
input data in one or more preprocessors of the neural 
network , and applying the preprocessed input data to a core 
portion of the neural network . The core portion of the neural 
network comprises a plurality of principal neurons and a 
plurality of interneurons , and is configured to implement a 
feedback loop from the interneurons to the principal neurons 
that supports persistent unsupervised differentiation of mul 
tiple learned sensory patterns over time . 
[ 0007 ] The method in this embodiment further comprises 
obtaining an output from the core portion of the neural 
network , and performing at least one automated action based 
at least in part on the output obtained from the core portion 
of the neural network . A wide variety of different automated 
actions may be taken in different use cases . 
[ 0008 ] In some embodiments , the neural network is adap 
tively expanded to facilitate the persistent unsupervised 
differentiation of multiple learned sensory patterns over 
time , illustratively by incorporating additional interneurons 
into the core portion and possibly also into at least one 
preprocessor . 
[ 0009 ] The core portion of the neural network in some 
embodiments illustratively comprises a synaptic interaction 
matrix of the principal neurons and the interneurons , in 
which an n - dimensional representation in the principal neu 
rons is mapped to an m - dimensional representation in the 
interneurons , where m >> n . 
[ 0010 ] In some embodiments , the neural network further 
comprises an inference network arranged between the prin 
cipal neurons and the interneurons of the core network . The 
inference network is illustratively configured to deliver input 
to the interneurons that influences how the interneurons 
affect the principal neurons , such that the principal neurons 
thereby exert different effects on the interneurons and the 
inference network . For example , the inference network may 
be configured to selectively activate certain interneurons . By 
weakly or partially predicting a solution in this manner , the 
inference network substantially increases the likelihood of 
successful signal identification by the core network under 
extremely high impulse noise or other highly suboptimal 
conditions . 
[ 0011 ] These and other illustrative embodiments of the 
invention include but are not limited to systems , methods , 
apparatus , processing devices , integrated circuits , and com 
puter program products comprising processor - readable stor 
age media having software program code embodied therein . 

[ 0004 ] Machine learning systems for rapid and reliable 
pattern recognition have a vast plethora of applications , 
from visual object recognition to air quality control to waste 
identification to signal detection . A correspondingly wide 
range of machine learning implementations have been 
developed to address these applications , ranging from tra 
ditional machine learning algorithms to deep neural net 
works that are able to learn and recognize arbitrarily com 
plex patterns via extensive training . The state of the art in 
deep networks , however , exhibits a number of well - known 
weaknesses that are the focus of intensive study and devel 
opment . These include catastrophic forgetting , in which 
networks rapidly lose their memories for trained exemplars 
when subsequent training is not carefully structured to retain 
this information ( e.g. , via retraining with previous training 
samples intercalated with the new training ) , vulnerability to 
adversarial examples in which subtle differences in inputs 
can lead to robust misclassification , and limits to memory 
capacity in which only a certain number of classes can be 
constructed within the network before they begin to interfere 
with one another and degrade performance . Moreover , deep 
networks are notoriously slow to train , and are computa 
tionally costly in part because the backpropagation algo 
rithm that underlies their learning propagates all error sig 
nals back across the entire network . These weaknesses limit 
the utility of deep learning approaches for many applica 
tions , particularly field - deployable systems that require 
rapid learning / adaptation and cannot practically incorporate 
high - end computational power in their designs . 

BRIEF DESCRIPTION OF THE FIGURES 

SUMMARY 

[ 0005 ] Illustrative embodiments provide neuromorphic 
algorithms for rapid online learning and signal restoration . 
For example , some embodiments more particularly provide 
spiking neural network ( SNN ) algorithms , inspired by olfac 
tory brain circuitry , that enable the rapid online learning of 
sensor array responses and the subsequent identification of 

[ 0012 ] FIG . 1 shows an information processing system 
comprising a processing platform implementing a neuro 
morphic algorithm using a spiking neural network ( SNN ) in 
an illustrative embodiment . 
[ 0013 ] FIG . 2 is a combined system and flow diagram 
showing one possible implementation of a neuromorphic 
algorithm using an SNN in an illustrative embodiment . 
[ 0014 ] FIG . 3 is a schematic diagram showing operation 
of a neuromorphic algorithm using an SNN in an illustrative 
embodiment . 

a 
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[ 0015 ] FIG . 4 shows an example of a heterogeneous 
duplication preprocessor of a neuromorphic algorithm using 
an SNN in an illustrative embodiment . 
[ 0016 ] FIG . 5A shows a portion of an SNN utilized in 
implementing a neuromorphic algorithm in an illustrative 
embodiment . 
[ 0017 ] FIG . 5B shows an example of a processing device 
implementing a neuromorphic algorithm using an SNN in an 
illustrative embodiment . 
[ 0018 ] FIG . 5C shows an example deployment scenario of 
a sensor array in an illustrative embodiment . 
[ 0019 ] FIGS . 6A through 6C illustrate plasticity rules of a 
neuromorphic algorithm in illustrative embodiments . 
[ 0020 ] FIG . 7 is a set of graphical plots ( a ) through ( d ) 
showing aspects of odor learning in illustrative embodi 
ments . The plots are also referred to herein as respective 
FIG . 7 ( a ) through 7 ( d ) . 
[ 0021 ] FIG . 8 is a set of graphical plots ( a ) through ( d ) 
showing aspects of multi - odor learning in illustrative 
embodiments . The plots are also referred to herein as 
respective FIG . 8 ( a ) through 8 ( d ) . 
[ 0022 ] FIG . 9 is a set of graphical plots ( a ) and ( b ) 
showing aspects of odor learning with plume dynamics in 
illustrative embodiments . The plots are also referred to 
herein as respective FIGS . 9 ( a ) and 9 ( b ) . 
[ 0023 ] FIG . 10 is a set of graphical plots ( a ) through ( g ) 
showing aspects of performance of a neuromorphic algo 
rithm using an SNN in illustrative embodiments . The plots 
are also referred to herein as respective FIGS . 10 ( a ) through 
10 ( g ) . 
[ 0024 ] FIG . 11 is a schematic diagram showing multiple 
columns of network circuitry including an external plexi 
form layer ( EPL ) of an SNN implementing a neuromorphic 
algorithm in an illustrative embodiment . 
[ 0025 ] FIG . 12 is a combined system and flow diagram 
showing another possible implementation of a neuromor 
phic algorithm using an SNN in an illustrative embodiment . 

encompass a sensor array or an individual sensing device of 
such an array . A sensor as the term is broadly used herein can 
itself comprise a set of sensing devices , such as a sensor 
array . 
[ 0028 ] Examples of particular implementations of neuro 
morphic algorithm 110 , including a neuromorphic algorithm 
more particularly referred to herein as Sapinet , and variants 
thereof , are described in detail elsewhere herein . The com 
ponent controller 112 generates one or more control signals 
for adjusting , triggering or otherwise controlling various 
operating parameters associated with the controlled system 
components 106 based at least in part on outputs generated 
by the neuromorphic algorithm 110 . 
[ 0029 ] The processing platform 102 is configured to uti 
lize an operational information database 114. Such a data 
base illustratively stores operational information relating to 
operation of the neuromorphic algorithm 110 and the con 
trolled system components 106. The controlled components 
106 in some embodiments comprise system components that 
are driven at least in part by outputs generated by the 
neuromorphic algorithm . A wide variety of different types of 
components can make use of outputs generated by the 
neuromorphic algorithm 110 , such as various types of equip 
ment associated with one or more of the example use cases 
described elsewhere herein . 
[ 0030 ] The operational information database 114 is illus 
tratively configured to store outputs generated by the neu 
romorphic algorithm 110 and / or the component controller 
112 , in addition to the above - noted operational information 
relating to operation of the neuromorphic algorithm 110 and 
the controlled system components 106 . 
[ 0031 ] Although the neuromorphic algorithm 110 and the 
component controller 112 are both shown as being imple 
mented on processing platform 102 in the present embodi 
ment , this is by way of illustrative example only . In other 
embodiments , the neuromorphic algorithm 110 and the 
component controller 112 can each be implemented on a 
separate processing platform . A given such processing plat 
form is assumed to include at least one processing device 
comprising a processor coupled to a memory . 
[ 0032 ] Examples of such processing devices include com 
puters , servers or other processing devices arranged to 
communicate over a network . Storage devices such as 
storage arrays or cloud - based storage systems used for 
implementation of operational information database 114 are 
also considered “ processing devices ” as that term is broadly 
used herein . In some embodiments , such processing devices 
comprise one or more neur uromorphic processors . 
[ 0033 ] The network 104 can comprise , for example , a 
global computer network such as the Internet , a wide area 
network ( WAN ) , a local area network ( LAN ) , a satellite 
network , a telephone or cable network , a cellular network 
such as a 4G or 5G network , a wireless network imple 
mented using a wireless protocol such as WiFi or WiMAX , 
or various portions or combinations of these and other types 
of communication networks . 
[ 0034 ] It is also possible that at least portions of other 
system elements such as one or more of the sensor arrays 
105 and / or the controlled system components 106 can be 
implemented as part of the processing platform 102 , 
although shown as being separate from the processing 
platform 102 in the figure . 
[ 0035 ] For example , in some embodiments , the system 
100 can comprise a laptop computer , tablet computer or 

DETAILED DESCRIPTION 

[ 0026 ] Illustrative embodiments can be implemented , for 
example , in the form of information processing systems 
comprising one or more processing platforms each having at 
least one computer , server or other processing device . A 
number of examples of such systems will be described in 
detail herein . It should be understood , however , that embodi 
ments of the invention are more generally applicable to a 
wide variety of other types of information processing sys 
tems and associated computers , servers or other processing 
devices or other components . Accordingly , the term “ infor 
mation processing system ” as used herein is intended to be 
broadly construed so as to encompass these and other 
arrangements . 
[ 0027 ] FIG . 1 shows an information processing system 
100 implementing a neuromorphic algorithm using a spiking 
neural network ( SNN ) in an illustrative embodiment . The 
system 100 comprises a processing platform 102 coupled to 
a network 104. Also coupled to the network 104 are sensor 
arrays 105-1 , . . . 105 - M and controlled system components 
106. The processing platform 102 implements at least one 
neuromorphic algorithm 110 and at least one component 
controller 112. Although this embodiment includes multiple 
sensor arrays 105 , other arrangements of sensors are pos 
sible , as described elsewhere herein . The term " sensor ” as 
used herein is intended to be broadly construed , so as to 
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desktop personal computer , a mobile telephone , or another 
type of computer or communication device , as well as 
combinations of multiple such processing devices , config 
ured to incorporate at least one sensor array and to execute 
a neuromorphic algorithm for controlling at least one system 
component . 
[ 0036 ] Examples of automated actions that may be taken 
in the processing platform 102 responsive to outputs gen 
erated by the neuromorphic algorithm 110 include generat 
ing in the component controller 112 at least one control 
signal for controlling at least one of the controlled system 
components 106 over the network 104 , generating at least a 
portion of at least one output display for presentation on at 
least one user terminal , generating an alert for delivery to at 
least user terminal over the network 104 , and / or storing the 
outputs in the operational information database 114 . 
[ 0037 ] A wide variety of additional or alternative auto 
mated actions may be taken in other embodiments . The 
particular automated action or actions will tend to vary 
depending upon the particular use case in which the system 
100 is deployed . Examples of such use cases are provided 
elsewhere herein . 
[ 0038 ] The processing platform 102 in the present 
embodiment further comprises a processor 120 , a memory 
122 and a network interface 124. The processor 120 is 
assumed to be operatively coupled to the memory 122 and 
to the network interface 124 as illustrated by the intercon 
nections shown in the figure . 
[ 0039 ] The processor 120 may comprise , for example , a 
neuromorphic processor , a microprocessor , an application 
specific integrated circuit ( ASIC ) , a field - programmable 
gate array ( FPGA ) , a central processing unit ( CPU ) , an 
arithmetic logic unit ( ALU ) , a digital signal processor 
( DSP ) , or other similar processing device component , as 
well as other types and arrangements of processing circuitry , 
in any combination . 
[ 0040 ] As a more particular example , in some embodi 
ments , the processor 120 comprises one or more neuromor 
phic processor integrated circuits . Accordingly , in some 
embodiments , system 100 is configured to include a neuro 
morphic processor integrated circuit based processing plat 
form . 
[ 0041 ] As another example , in some embodiments , the 
processor 120 comprises one or more graphics processor 
integrated circuits . Such graphics processor integrated cir 
cuits are illustratively implemented in the form of one or 
more graphics processing units ( GPUs ) . Accordingly , in 
some embodiments , system 100 is configured to include a 
GPU - based processing platform . 
[ 0042 ] A wide variety of other types and arrangements of 
processors can be used in implementing processing platform 
102 in other embodiments . The term “ processing device ” as 
used herein is therefore intended to be broadly construed , 
and comprises at least one such processor and at least one 
memory coupled to the at least one processor . 
[ 0043 ] The memory 122 stores software program code for 
execution by the processor 120 in implementing portions of 
the functionality of the processing platform 102. For 
example , at least portions of the functionality of neuromor 
phic algorithm 110 and component controller 112 can be 
implemented using program code stored in memory 122 . 
[ 0044 ] A given such memory that stores such program 
code for execution by a corresponding processor is an 
example of what is more generally referred to herein as a 

processor - readable storage medium having program code 
embodied therein , and may comprise , for example , elec 
tronic memory such as SRAM , DRAM or other types of 
random access memory , flash memory , read - only memory 
( ROM ) , magnetic memory , optical memory , or other types 
of storage devices in any combination . 
[ 0045 ] Articles of manufacture comprising such proces 
sor - readable storage media are considered embodiments of 
the invention . The term “ article of manufacture ” as used 
herein should be understood to exclude transitory , propa 
gating signals . 
[ 0046 ] Other types of computer program products com 
prising processor - readable storage media can be imple 
mented in other embodiments . 
[ 0047 ] In addition , illustrative embodiments may be 
implemented in the form of integrated circuits comprising 
processing circuitry configured to implement processing 
operations associated with one or both of the neuromorphic 
algorithm 110 and the component controller 112 as well as 
other related functionality . 
[ 0048 ] The network interface 124 is configured to allow 
the processing platform 102 to communicate over one or 
more networks with other system elements , and may com 
prise one or more conventional transceivers . 
[ 0049 ] It is to be appreciated that the particular arrange 
ment of components and other system elements shown in 
FIG . 1 is presented by way of illustrative example only , and 
numerous alternative embodiments are possible . For 
example , other embodiments of information processing sys 
tems can be configured to implement neuromorphic algo 
rithm functionality of the type disclosed herein . 
[ 0050 ] Terms such as “ sensor array ” and “ controlled sys 
tem component ” as used herein are intended to be broadly 
construed . For example , a given sensor array in some 
embodiments can comprise multiple sensors collectively 
implemented on a single common device , or a set of 
geographically - distributed sensors associated with respec 
tive distinct Internet - of - Things ( IoT ) devices . A wide variety 
of different types of data sources can be used to provide 
input data in other embodiments . 
[ 0051 ] For example , it is possible in some embodiments 
that a given sensor array can be replaced with a single 
sensor . It also is possible in some embodiments that each 
sensor , embedded within a sensor array , can itself comprise 
a set of multiple physical sensors , with signals generated by 
such multiple physical sensors being combined by averag 
ing , weighted averaging , or another designated function , 
prior to being sampled for delivery to a preprocessor , such 
that this set of sensors effectively acts as a single sensor 
delivering input data to a single column of a neural network . 
It further is possible in some embodiments that this example 
association of sets of multiple sensors with respective 
columnar inputs of the neural network will be computed 
within one or more preprocessors , after some preprocessing 
steps but before other preprocessing steps . The term “ sen 
sor ” as used herein is intended to encompass a device 
providing input data to a single column of a neural network , 
irrespective of how many physical sensors may be combined 
to generate this input . 
[ 0052 ] Terms such as “ signal restoration ” and “ signal 
identification ” as used herein are also intended to be broadly 
construed , so as to encompass , for example , various arrange 

> 
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ments for recognizing a particular sensory pattern given 
certain input data from a sensor array or other type of data 
source . 

[ 0053 ] Neuromorphic algorithms of the type disclosed 
herein can be implemented on any platform that can benefit 
from their rapid online learning and signal restoration 
advantages . Such platforms can include any type of com 
puter , mobile telephone , handheld sensor device or other 
type of processing device that is configured to utilize a 
neuromorphic algorithm in processing sensory input . It is 
also possible that a platform implementing a neuromorphic 
algorithm as disclosed herein can comprise a robot or other 
type of automaton . For example , the sensor arrays 105 , 
neuromorphic algorithm 110 and component controller 112 
can be collectively configured to provide olfactory function 
ality for such entities . These and other aspects of illustrative 
embodiments disclosed herein are therefore presented by 
way of example only , and should not be construed as 
limiting in any way . 
[ 0054 ] Additional details regarding illustrative embodi 
ments will now be described with reference to FIGS . 2 
through 4 . 
[ 0055 ] These embodiments include a particular SNN 
implementation referred to herein as “ Sapinet . ” It is to be 
appreciated that the particular features and functionality of 
Sapinet as described herein are presented by way of non 
limiting example only , and can be varied in other embodi 
ments . Sapinet and its variants described below therefore 
represent examples of possible implementations of the neu 
romorphic algorithm 110 of FIG . 1. Although Sapinet uses 
an SNN , it is to be appreciated that other embodiments 
disclosed herein can implement neuromorphic algorithms 
using different types of neural networks not necessarily 
involving SNNs . Accordingly , use of an SNN in illustrative 
embodiments herein should be viewed as exemplary rather 
than as limiting in any way . 
[ 0056 ] The following description will first introduce each 
of FIGS . 2 through 4 , and will then provide additional details 
regarding the operation of Sapinet in illustrative embodi 
ments . 
[ 0057 ] FIG . 2 illustrates the operation of an example 
implementation 200 of the Sapinet algorithm , which is 
illustratively used as neuromorphic algorithm 110 in system 
100 in some embodiments . In the implementation 200 , the 
Sapinet algorithm includes initial process steps 202 and 204 , 
inputs 203 and 214 , one or more preprocessors 205 and a 
core network that includes principal neurons 210 , inference 
network 211 and interneurons 212. The preprocessor ( s ) 205 
and core network , having principal neurons 210 , inference 
network 211 and interneurons 212 , collectively comprise an 
example of a neural network , and more particularly an 
example of an SNN , in which the Sapinet algorithm executes 
in implementation 200. Such an SNN is also referred to 
herein as a Sapinet network . 
[ 0058 ] There are two distinct feedback loops in the imple 
mentation 200 , denoted as theta and gamma feedback loops 
in the figure . Theta ( 0 ) indicates the loop governing data 
sampling ; gamma ( Y ) indicates the faster feedback loop of 
the core Sapinet learning / attractor network . Illustrative 
embodiments herein implement adaptive network expansion 
( ANE ) functionality . For example , ANE allows new 
interneurons to be added to a Sapinet network to dynami 
cally add capacity without disrupting existing engrams , as 
illustrated by the solid circular arrow adjacent interneurons 

212 in the figure . ANE can also be deployed in the inference 
network 211 and in certain preprocessors , as illustrated by 
the dashed circular arrows adjacent the corresponding com 
ponents in the figure . 
[ 0059 ] The Sapinet network is initialized in initialization 
step 202 , and input data is obtained in data sampling step 
204. Such operations illustrative utilize sensory array input 
and / or numerical data provided via input 203. The input data 
is preprocessed in the one or more preprocessors 205 , and 
the preprocessed input data is then applied to the core 
network that include principal neurons 210 and interneurons 
212. The interneurons 212 may be configured in accordance 
with priors via input 214 . 
[ 0060 ] The inference network 211 is arranged between the 
principal neurons 210 and the interneurons 212 within the 
core network and is illustratively configured to deliver input 
to the interneurons 212 that influences how the interneurons 
212 affect the principal neurons 210 , such that the principal 
neurons 210 thereby exert different effects on the interneu 
rons 212 and the inference network 211 . 
[ 0061 ] As indicated above , the core network in this 
embodiment implements the gamma feedback loop from the 
interneurons 212 to the principal neurons 210. This gamma 
feedback loop is an example of what is more generally 
referred to herein as a feedback loop that supports persistent 
unsupervised differentiation of multiple learned sensory 
patterns over time , as will be described in more detail 
elsewhere herein . 
[ 0062 ] The gamma feedback loop in some embodiments is 
configured to control delivery of synaptic inhibition infor 
mation from the interneurons 212 back to the principal 
neurons 210 of the core network , illustratively based at least 
in part on synaptic excitatory information delivered from the 
principal neurons 210 to the interneurons 212 . 
[ 0063 ] The theta feedback loop is an example of what is 
more generally referred to herein as a data sampling loop , 
and is utilized in obtaining input data for the one or more 
preprocessors 205. Multiple cycles of the gamma feedback 
loop are illustratively executed within a single cycle of the 
theta feedback loop . 
[ 0064 ] The input data in implementation 200 can be 
obtained , for example , from one or more sensor arrays or 
other arrangements of sensors , via input 203 , using the data 
sampling step 204 with timing controlled by the theta 
feedback loop . 
[ 0065 ] Outputs are illustratively obtained from the core 
network , including readouts from the principal neurons 210 , 
the inference network 211 and the interneurons 212 , with 
such readouts being denoted as Readout # 1 , Readout # 2 and 
Readout # 3 in the figure . Various automated actions may be 
taken based at least in part on these and other outputs of 
implementation 200 , also as described elsewhere herein . 
[ 0066 ] In the FIG . 2 embodiment , the SNN is configured 
to provide spike timing for the gamma feedback loop , with 
inhibition delaying the spike timing and relatively strong 
sensory input advancing the spike timing . 
[ 0067 ] Operation of the gamma feedback loop in adapting 
synaptic weights of the core network is illustratively con 
trolled based at least in part on spike timing information 
represented by relative timing of spikes for at least a portion 
of the principal neurons 210 and the interneurons 212 . 
[ 0068 ] In some embodiments , at least a subset of the 
principal neurons 210 of the core network are configured to 
represent respective mitral cells ( MCs ) of an olfactory 
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a learning system and at least a subset of the interneurons 212 
of the core network are configured to represent respective 
granule cells ( GCs ) of the olfactory learning system , 
although numerous other arrangements are possible , and the 
disclosed arrangements should therefore not be viewed as 
being restricted to olfactory learning applications . MCs are 
therefore considered examples of what are more generally 
referred to herein as principal neurons or PNs , and GCs are 
considered examples of what are more generally referred to 
herein as interneurons or INs . Other types of principal 
neurons and interneurons can be used in other embodiments . 
[ 0069 ] As indicated above , the SNN of implementation 
200 can be adaptively expanded by incorporating additional 
interneurons 212 into the core network , and additionally or 
alternatively by incorporating additional interneurons into 
the inference network 211 and / or at least one of the one or 
more preprocessors 205 . 
[ 0070 ] In some embodiments , the additional interneurons 
212 are advantageously incorporated into the core network 
in a manner that does not disrupt existing learned sensory 
patterns of the core network . 
[ 0071 ] Additionally or alternatively , the SNN of imple 
mentation 200 can be configured to provide a neuromodu 
latory dynamic state trajectory configured to adjust neuronal 
properties systematically and select a particular outcome . 
[ 0072 ] These and other features of illustrative embodi 
ments will be described in more detail below . 
[ 0073 ] Referring now to FIG . 3 , a portion 300 of the 
Sapinet implementation 200 is shown in more detail . Sensor 
inputs received via input 203 and sampled in data sampling 
step 204 are filtered through the one or more preprocessors 
205 and cause excitation of principal neurons 210 of the core 
network , which are illustratively MCs and are shown as 
triangles in the figure . These excitatory principal neurons 
210 form a synaptic interaction matrix 302 in the core 
network with inhibitory interneurons 212 of the core net 
work , which are illustratively GCs and shown as ovals in the 
figure . In this figure and elsewhere herein , the principal 
neurons 210 are also referred to as PNs , and the interneurons 
212 are also referred to as INs . The one or more preproces 
sors 205 in this embodiment are associated with a glomeru 
lar layer ( “ GlomL ” ) as shown . Details of such a layer are 
described in more detail elsewhere herein . 
[ 0074 ] The synaptic interaction matrix 302 of the principal 
neurons 210 and the interneurons 212 in the present embodi 
ment illustratively comprises an n - dimensional representa 
tion in the principal neurons 210 which is mapped to an 
m - dimensional representation in the interneurons 212 , 
where m >> n . The synaptic interaction matrix 302 is also 
referred to in the figure as characterizing a plastic network . 
[ 0075 ] The horizontal lines near the principal neurons 210 
at the left side of the figure denote lateral dendrites of those 
principal neurons 210 , and the particular intersections 
marked with a dot denote the branch points of an MC 
dendritic tree . The inset in the figure depicts such intercon 
nections as represented by the synaptic interaction matrix 
302 , in which intersecting lines have some initial probability 
of being connected to each other ( e.g. , 20 % ) . During train 
ing , the weights of these synaptic interactions are iteratively 
modified over multiple learning cycles corresponding to 
respective gamma cycles of the gamma feedback loop of 
FIG . 2. During testing / classification , the pattern of learned 
weights in the synaptic interaction matrix 302 mediates an 
attractor network . Representations can be read out from 

principal neurons 210 , via Readout # 1 of FIG . 2 , or from 
interneurons 212 , via Readout # 3 of FIG . 2. The inference 
network is not depicted in FIG . 3 . 
[ 0076 ] Additional details relating to illustrative embodi 
ments of the one or more preprocessors 205 will now be 
described . 
[ 0077 ] A given one of the one or more preprocessors 205 
illustratively comprises a plurality of input nodes , each 
adapted to receive input data associated with a different data 
source . For example , the input nodes may be adapted to 
receive input data from respective different sensors of a 
sensor array . In some embodiments , each input node may 
receive input data from a data source comprising any 
number of physical sensors . 
[ 0078 ] In some embodiments , the given preprocessor 
more particularly comprises a heterogeneous duplication 
preprocessor configured to statistically regularize diverse 
sensory inputs of the obtained input data . 
[ 0079 ] As a more particular example , the given prepro 
cessor may comprise , for a particular one of the input nodes , 
a plurality of excitatory feed - forward interneurons each 
coupled to the particular input node , and a plurality of 
principal neurons each coupled to one or more of the 
excitatory feed - forward interneurons . 
[ 0080 ] FIG . 4 shows a schematic of a heterogeneous 
duplication preprocessor 400 in one embodiment . In this 
embodiment , each sensor stream from a given input sensor 
402-1 is fanned out to a set 404 of multiple excitatory 
feed - forward interneurons , each of which projects sparsely 
and randomly to a number of “ sister ” principal neurons in a 
set 406 of principal neurons . Here , the number of principal 
neurons N is 5 * C , where C is the number of input sensors ; 
this number can vary , and some variations of this architec 
ture have individual principal neurons receiving input from 
more than one sensor . Also , as indicated previously , the term 
“ sensor ” as used herein is intended to be broadly construed , 
and can in some embodiments include a set of multiple 
physical sensors . It should be noted that the cellular prop 
erties of the interneurons and principal neurons , and the 
weights of the synaptic projections , are heterogeneous . 
When implemented following sensor scaling and global 
normalization , this preprocessor 400 serves to statistically 
regularize diverse sensory inputs . Outputs of the preproces 
sor 400 are provided to the core network as illustrated in the 
figure . In some embodiments , at least portions of the prin 
cipal neurons 406 are considered part of the core network 
rather than part of the preprocessor 400 . 
[ 0081 ] In the FIG . 4 embodiment , the brain - mimetic 
implementation of heterogeneous duplication of the prepro 
cessor 400 is modeled after aspects of the intraglomerular 
circuitry of the mammalian main olfactory bulb ( MOB ) , and 
serves to statistically regularize the distribution of ampli 
tudes among inputs . Each sensor input is delivered to a 
number of excitatory feedforward interneurons ( here , five ) 
comparable to the external tufted ( ET ) cells of the MOB , and 
from there , via sparse , random , feedforward projections , to 
the principal neurons of the core learning network ( analo 
gous to MOB MCs ) . This example preprocessor configura 
tion illustratively expands the size of the core learning 
network ; here , each sensor now corresponds to a column 
with five computing units / sister MCs . 
[ 0082 ] Additional details relating to illustrative aspects of 
Sapinet and its variants will now be described . 
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[ 0083 ] SNNs , also known as neuromorphic networks , 
comprise an alternative to traditional analogue - valued deep 
networks . Like traditional deep networks , they are based on 
a neuroscience metaphor , comprising a large number of state 
variables ( “ neurons ” ) coupled pairwise by transfer functions 
( " synapses ” ) . Unlike deep networks , the communication 
between neurons is based on discrete spikes ( also referred to 
as events , or pulses ) ; accordingly , they sometimes have been 
referred to these as pulsed , pulse - coupled , or event - based 
networks . In principle , spiking networks have universal 
computational power — that is , they are theoretically capable 
of computing any algorithm . However , SNNs also can be 
constructed with specific architectures , as is observed in the 
brain , thereby favoring improved effectiveness at certain 
tasks at the cost of generality ( i.e. , the architecture is part of 
the algorithm ) . This neuromorphic principle can be extended 
to incorporate multiple different neuronal and synaptic 
types , feedback loops , sparse connectivity , localized synap 
tic learning rules , and other heterogeneities that are gener 
ally not considered in traditional deep learning systems . 
[ 0084 ] When implemented on appropriate hardware , 
SNNs are extremely energy efficient and uniquely scalable 
to very large problems ; consequently , marrying the effi 
ciency of neuromorphic processors with the algorithmic 
power of deep learning is an important industry goal . 
[ 0085 ] The theoretical promise of SNNs has motivated the 
development of multiple neuromorphic hardware platforms , 
including the academic platforms SpiNNaker and Brain 
Scales , as well as IBM's TrueNorth platform and , most 
recently , the Loihi platform of Intel Labs , which embeds 
rapid , iterative plasticity ( “ self - learning ” ) in a compact , 
scalable chip . These hardware platforms are considered 
illustrative examples of what are more generally referred to 
herein as “ processing devices ” or “ processing platforms . ” A 
premise of these hardware projects is that the availability of 
these platforms would spur the development of practical , 
useful neuromorphic algorithms by highlighting their par 
ticular strengths in energy efficiency and scalability . 
[ 0086 ] Illustrative embodiments such as Sapinet provide 
significant improvements over conventional techniques . 
Such conventional techniques include the following : 
[ 0087 ] 1. Traditional deep learning / deep neural networks 
( DNNs ) . This is a vast field of research with powerful 
applications . These networks are generally unstructured a 
priori and can learn nearly any patterns given enough 
training . However , training is very slow ( thousands to mil 
lions of iterations ) , and updating ( " learning " ) depends on a 
global backpropagation rule that requires highly intercon 
nected ( and correspondingly slow ) networks . SNNs have 
many fewer current applications , and none to our knowledge 
that are currently commercially important . Rather , SNNs are 
competing with DNNs on the basis of their lower energy 
expenditure and ability to be deployed on specialized hard 
ware ( like the Intel Loihi or IBM TrueNorth ) . Additionally , 
SNNs are most effectively competing with DNNs by imple 
menting custom architectures that are specialized for certain 
applications ( “ the architecture is part of the algorithm ” ) . 
Sapinet is taking this approach , and comparisons against a 
contemporary DNN are illustrated in FIG . 10. Briefly , Sap 
inet exhibits few - shot learning , online learning ( lack of 
catastrophic forgetting ) , and other features that DNNs do not 
exhibit . Some specialized DNNs are working to limit cata 
strophic forgetting by slowing / freezing certain weights after 
learning a given stimulus , so that that stimulus will not be 

forgotten after subsequent learning of other stimuli . How 
ever , success in this approach is still limited , and a great deal 
of supervision is required to identify and stabilize the more 
important weights . In short , SNNs like Sapinet are far 
superior to DNNs for a limited range of problems . The rapid 
learning , rapid updating in response to sensor drift , and 
energetically efficient hardware implementations are the 
most substantive and relevant advantages of Sapinet and 
some other SNNs over potential DNN competitors . 
[ 0088 ] 2. Other SNN implementations . Echo state net 
works and liquid state machines are the state of the art in the 
theoretical description of the capabilities of SNNs . Com 
pared to Sapinet , however , these networks eschew specific 
architectural designs in favor of exploring the universal 
computational capabilities of SNNs . In this way , these 
approaches are more directly comparable to the state of the 
art in DNNs . Sapinet , in contrast , has instantiated nonplastic 
structure inspired by the neural circuitry of the mammalian 
olfactory system . Accordingly , Sapinet excels at problems 
that resemble the problem of odor learning and identifica 
tion . Fortunately , this problem structure is quite broad , and 
includes many non - chemosensory applications . Specifically , 
Sapinet is applicable to any problem based on the classifi 
cation of input populations that do not exhibit relevant 
low - dimensional structure , such as the two - dimensional 
patterns of a visual image . Additional description elsewhere 
herein provides particular use cases in illustrative embodi 
ments . Such use cases can involve taking various automated 
actions based at least in part on Sapinet outputs . 
[ 0089 ] 3. Other ways of analyzing chemosensory data 
( machine olfaction , artificial nose research ) . Conventional 
machine olfaction essentially comprises that portion of the 
chemosensors market that is focused on large arrays of 
broadly sensitive sensors ( see , e.g. , K. C. Persaud et al . , 
“ Neuromorphic Olfaction , ” CRC Press , Boca Raton , Fla . 
2013 ) , sometimes including processes of environmental 
adaptation or learning . Most machine olfaction research uses 
traditional machine learning approaches ; these approaches 
are outclassed by Sapinet . There also is a small but inter esting literature concerning biologically inspired algorithms 
of modest complexity . Several emphasize concentration 
tolerance , as that is one of the simplest problems to resolve 
under theoretical no - noise conditions . Two such algorithms 
are based on the premise that the rank order of spike 
latencies following stimulus onset is concentration - invari 
ant , and hence can recognize odors across concentrations . 
There is some truth to this principle , though it falls apart at 
lower or higher concentrations where individual sensor 
responses begin to asymptote , and there is no provision for 
recognition under noise . Several other biomimetic models 
emphasize the utility of decorrelation using lateral inhibi 
tion , though these networks largely ignore the dimension 
ality problems that nonplastic lateral inhibition presents in 
such systems . Some other biomimetic models are based on 
higher - dimensional projections using Hebbian learning 
( roughly comparable to the feed - forward component of the 
Sapinet core network ) , after which linear classifiers are used ; 
however , these approaches lack feedback and do not develop 
or utilize properties comparable to the k - order receptive 
fields of interneurons in Sapinet . A more recent Hebbian 
plasticity - based model achieves rapid , few - shot odor learn 
ing and explores the utility of sparse representations , but is 
based on spike rates and primarily oriented towards explor 
ing the control possibilities of the neuromodulator octo 
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( 2 ) variance arising from odor plume dynamics , ( 3 ) variance 
arising from unregulated odor concentration ( or other signal 
intensities ) , ( 4 ) variance arising from unpredictable sensor 
drift , and ( 5 ) impulse ( Bernoulli ) noise arising from com 
petitive interference ( e.g. , background odors / signals ) that 
effectively randomize the responses of a proportion of the 
sensors . 

pamine in insects . Some models include dynamicse.g . , 
oscillations comparable to Sapinet's gamma network , as 
these oscillations are prominent in mammalian and insect 
olfactory systems ; however , oscillations and spike syn 
chrony are not directly functional , and are not applied 
towards enhancing classification performance . Other work 
using SNNs for odor classification is limited to proofs of 
concept that higher - dimensional projections coupled with 
simple plasticity rules can quickly generate robustly distinct 
representations . Although this principle is well established , 
and is utilized in some embodiments herein , conventional 
approaches remain underdeveloped for practical , real - world 
applications . 
[ 0090 ] Unique to Sapinet are the use of gamma oscilla 
tions as a clock to measure spike latencies and establish 
attractor dynamics , and the deployment of feedback network 
inhibition to delay , rather than prevent , principal neuron 
spike times . Sapinet establishes the principle of the perma 
nent , unsupervised differentiation of interneurons , and sup 
ports lifelong learning owing to its ANE functionality . 
Sapinet has been developed to the point where the statistical 
unreliability of natural signals has been recognized as a 
challenge to the network , and resolved with cascades of 
preprocessors ( the exception is concentration tolerance , a 
problem that has been solved several times as noted above ) . Sapinet uses sophisticated parameters for its excitatory 
learning rules to regulate the value of k , and uniquely 
includes inhibitory learning rules . No other approach to date 
has developed or even proposed the inclusion of the func 
tions of the Sapinet inference network , or of the neuromodu 
latory sweep . Indeed , only Sapinet has been explicitly tested 
for recognition and classification performance under high 
levels of noise . Finally , Sapinet also is being developed in 
concert with an analytical mathematical framework that 
underlies its approach to hierarchical classification and 
supervised perceptual learning . 
[ 0091 ] The uniqueness of Sapinet is not primarily in 
specific unique features or algorithmic strategies , though it 
does include several of each . Rather , Sapinet is a robust and 
well - vetted system that , because of its inclusion of several 
layers of processing intended to solve multiple practical 
problems of learning and recognition , has achieved strong 
performance under realistically problematic circumstances . 
[ 0092 ] Accordingly , there multiple illustrative 
embodiments disclosed herein exhibiting different instantia 
tions of Sapinet’s core principles . For example , as described 
below , the excitatory synaptic learning rule serves to 
develop increasingly specific experience - dependent recep 
tive fields in interneurons ( e.g. , GCs ) , whereas the inhibitory 
synaptic learning rule serves to denoise representations in 
principal neurons ( e.g. , MCs ) . The specific implementations 
and parameters of these rules , however , differ among illus 
trative embodiments , particularly depending on factors such 
as the hardware platform on which they are instantiated . For 
example , different instantiations of the excitatory learning 
rule , with associated parameters , are described for x86 
architectures in some embodiments herein , whereas the 
same rule in a form compatible with the Loihi neuromorphic 
chip instruction set is described in conjunction with other 
embodiments herein . Moreover , there are multiple sources 
of noise ( e.g. , error ) that Sapinet is designed to identify and 
disregard . Each of these is described separately below , in 
some cases in conjunction with different illustrative embodi 
ments , but examples include ( 1 ) random ( Gaussian ) noise , 

[ 0093 ] In the following , we describe in detail certain 
illustrative embodiments of a SNN - based algorithm for 
signal restoration and identification ( classification ) that we 
refer to herein as Sapinet ( FIGS . 2 and 3 ) . 
[ 0094 ] Sapinet is based on architectural and computational 
principles extracted from the neural circuitry of the mam 
malian olfactory system . It is designed for the rapid learning 
of arbitrary , high - dimensional patterns and the subsequent 
recognition and classification of such patterns in the pres 
ence of high levels of interference ( for example , in which an 
unknown 60 % of the sensors return random , noninformative 
values , and / or all sensor response profiles have drifted , 
and / or signal intensities are fluctuating unpredictably ) . Spe 
cifically , Sapinet is broadly applicable to input derived from 
arbitrary sensor arrays ( including heterogeneous arrays of 
sensors ) or arbitrary lists of features ( such as a set of cellular 
characteristics derived from a breast cancer biopsy ) . For 
these purposes , Sapinet's performance is superior to deep 
network - based alternatives within most realistic , deployable 
scenarios in particular , those in which limited computing 
power is immediately available , or that do not permit 
indefinite periods of training and retraining ( e.g. , see FIG . 
10 ) . Unlike deep networks , Sapinet also is capable of robust 
online learning , in which new patterns can be learned , and 
the size of the network can be dynamically expanded , 
without impairing the network's memory for patterns 
already learned . Sapinet can be much more rapidly trained 
than a deep network — often requiring only one - or few - shot 
training to learn to robustly recognize patterns embedded 
within copious noise . Unlike generically trained networks , 
Sapinet explicitly embeds representations of similarity ( e.g. , 
intrinsic quantification of the similarity of different inputs ) , 
which counteracts the effectiveness of adversarial examples 
and enables generalization beyond experience . Representa 
tions are based in part on spike timing properties , enabling 
the fast and unambiguous communication and computation 
of information by the SNN . Finally , plasticity in Sapinet is 
based on local synaptic learning rules , and hence takes 
advantage of the optimizations of specialized neuromorphic 
hardware platforms ( in particular , the colocalization of 
memory and compute ) . An implementation of Sapinet on the 
Intel Loihi neuromorphic hardware platform is described 
elsewhere herein with reference to FIGS . 5 through 10 . 
[ 0095 ] Illustrative implementations of Sapinet are not 
designed for visual images or other signals in which embed 
ded low - dimensional information is critical ( e.g. , ImageNet , 
MNIST ) , and is not expected to be competitive for visual 
classification problems in its present form . Rather , it is 
appropriate for pattern recognition in any dataset comprised 
of unstructured lists of input or sensor values , such as 
genomics datasets , microarrays , sets of medical diagnostic 
criteria , band - discretized spectral signatures , and chemosen 
sor arrays . With the inclusion of the appropriate preproces 
sors , Sapinet can accept as input any arbitrary sets of values 
or can be connected to any arbitrary battery of sensors that 
can provide a numerical representation of their activity to 
the network . 
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[ 0096 ] Accordingly , a wide variety of different sensors can 
be used in illustrative embodiments herein , including any 
sensor that can provide a signal or other numerical repre 
sentation to the network . Such representations can include , 
for example , voltage values , current values , resistance mea 
surements , as well as many other variants without limitation . 
Examples of sensors that can be used in illustrative embodi 
ments herein include numerous different types of chemical 
sensors and / or gas sensors as well as other types of sensors , 
including , in some embodiments , image sensors . It is there 
fore to be appreciated that the term “ sensor ” as used herein 
is intended to be broadly construed , and as indicated else 
where herein , such a sensor can itself comprise a sensor 
array having multiple physical sensors . These and other 
sensors can comprise or otherwise be implemented in , for 
example , IoT devices , mobile devices , and a wide variety of 
other types of processing devices . 
[ 0097 ] As indicated previously , an example Sapinet imple 
mentation 200 is depicted in FIG . 2. A network is con 
structed and initialized based on the size of the input ( sensor ) 
array as well as on other user - dependent criteria . Sensor 
array input ( or an equivalent vector of input values ) is 
presented to the network ; the input to each sensor can be a 
single value , a list of values ( e.g. , sampled in turn according 
to the “ theta ” cycle ) or a continuous sensory stream ( e.g. , 
sampled at discrete intervals according to the “ theta ” cycle ) . 
Each input sample vector is filtered through a set of pre 
processors for signal conditioning . Ultimately , preprocessor 
output is delivered to the complement of principal neurons 
( PNs ) that comprise part of the core attractor network . ( Each 
sensor's activity may be ultimately mapped onto a single 
PN , or may be mapped onto a different number of PNs by 
one of the preprocessors ) . 
[ 0098 ] The core network projects PN activity onto a larger 
number of interneurons ( INs ) , activating them such that 
they , in turn , deliver synaptic inhibition back onto the PN 
array . The weight matrix between PNs and INs ( FIG . 3 ) is 
initially sparse ( i.e. , only a fraction of the possible connec 
tions between PNs and INs actually exist ) , and becomes 
sparser and more selective with learning . During sensory 
activation , this excitatory - inhibitory feedback loop is driven 
through several recurrent cycles ( the gamma cycle ) . When 
learning is active , synaptic weights at the excitatory 
( PN > IN ) and inhibitory ( IN- > PN ) synapses are updated 
over successive gamma cycles according to local learning 
rules . During testing , successive gamma cycles underlie an 
attractor network in which these learned synaptic weights 
shape the attractor state , leading to pattern recognition even 
under highly noisy conditions . 
[ 0099 ] An inference network can be included in a Sapinet 
instantiation , receiving a copy of PN activity and delivering 
its output onto INs in parallel to direct PN > IN excitation . 
When present , the inference network provides additional 
pattern completion capacities , and embeds additional 
memory that can be deployed to select among competing 
engrams so as to enable the ( sequential ) recognition of 
multiple knowns within a single sample . ( The latter effect 
also can be achieved by externally imposed priors , also 
generally delivered onto INs , as illustrated in FIG . 8 ( d ) ) . 
Lastly , inference networks can be used to govern more 
sophisticated learning methods ( e.g. , odor learning methods , 
etc. ) , enabling , for example , experience - based changes to 
the intrinsic discriminability of similar inputs with different 
implications ( perceptual learning ) . Briefly , by selectively 

deploying inhibition in service to the need to increase the 
discriminability of two similar inputs ( e.g. , physically simi 
lar inputs , chemically similar inputs , etc. ) , their representa 
tions in the network can be permanently driven apart . 
[ 0100 ) Finally , Sapinet is capable of " lifelong learning " 
summarized as the capacity to keep learning new patterns 
indefinitely . Online learning the ability to learn new pat 
terns as they occur , without disrupting earlier learning also 
is implicit in lifelong learning . To do this , Sapinet dynami 
cally expands the number of interneurons via ANE , as 
illustrated in FIG . 2. It should be noted that ANE does not 
disrupt existing memories and does not require parameter 
adjustments to maintain performance . This capacity for 
online / lifelong learning also can be used to counteract 
sensor drift . ANE also can be deployed in the inference 
network and in certain preprocessors . 
[ 0101 ] This combination of biomimetic features consti 
tutes a new SNN - based algorithm for pattern learning and 
recognition under noise that is competitive in performance 
with state - of - the - art deep networks while also exhibiting 
clearly superior practical properties such as very rapid , 
lifelong learning , a robustness to widely variable input 
signals , resistance to catastrophic forgetting , and compat 
ibility with dedicated neuromorphic hardware platforms . 
[ 0102 ] Sapinet is an SNN algorithm , which is an example 
of what is more generally referred to herein as a neuromor phic algorithm . SNNs in general , and Sapinet in particular , 
are based on several core principles that differentiate them 
from contemporary deep neural networks : 
[ 0103 ] 1. Event - based architecture , by which communica 
tions between neurons are mediated by discrete pulses , or 
spikes , as opposed to direct analogue values . This has some 
advantages in embedded systems , because it favors very 
low - power implementations and is not susceptible to mis 
communications based on environmental factors such as 
ambient temperature . 
[ 0104 ] 2. Neurons and synapses are not necessarily uni 
form ; they can be of multiple types and exhibit arbitrarily 
different computational properties . In Sapinet , for example , 
principal neurons ( PNs ) excite the neurons that they get , 
whereas interneurons ( INs ) are inhibitory . Neurons may act 
as strict integrators , leaky integrators , or exhibit more com 
plex responses to input . They may also exhibit other internal 
structure ; for example , in some implementations , Sapinet 
PNs have two compartments that follow different rules , but 
work in concert to produce a common output ( e.g. , as 
described elsewhere herein regarding an illustrative embodi 
ment on the Loihi chip ) . Additionally , the density of synaptic 
connections among neurons in SNNs often is much sparser 
than is common in deep networks . 
[ 0105 ] 3. Network architectures are not necessarily feed 
forward ; they can include any number of feedback loops . 
Feedback - inclusive spiking networks sometimes 
referred to as recurrent neural networks ( RNNs ) , examples 
of which include echo state networks and liquid state 
machines . Recurrent networks may exhibit dynamical sys 
tems properties , such as Sapinet’s gamma cycle ( FIG . 2 ) . 
[ 0106 ] 4. Information can be highly localized , such that 
synaptic learning rules may depend only on local interac 
tions without reference to global network state . This enables 
SNNs to take advantage of the benefits of the “ colocalization 
of memory and compute , ” a core efficiency principle of 
neuromorphic hardware whereby memory resources can be 
effectively localized across a physical network . The corre 

are 
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sponding constraint is that computations at particular syn 
apses will not have global access to information about 
network state . 
[ 0107 ] 5. While general reservoir computing SNN models 
can be as generic and pluripotent as traditional deep net 
works , the architectural non - uniformities described above 
imply that some aspects of network architecture may be 
predesigned and application - specific . Particular SNN 
designs therefore favor some capabilities at the expense of 
others , as represented by the principle that “ the architecture 
is part of the algorithm . ” These may include multiple 
computational layers comprised of different network ele 
ments that process signals sequentially or recurrently . Sap 
inet is designed around a specific layered architecture that 
enables its fast learning and robust classification - under 
noise performance , at the expense of its generality . 
[ 0108 ] 6. SNN models are capable of processing continu 
ous - time inputs , discretely sampled by a network's internal 
dynamics ( e.g. , Sapinet's theta cycle ; FIG . 2 ) . 
[ 0109 ] As illustrated in FIG . 2 , Sapinet comprises a set of 
one or more input preprocessors , a core SNN of sparsely 
coupled excitatory and inhibitory neurons , and a set of 
supervisory and storage systems that regulate the core SNN . 
These supervisory systems may be fully instantiated net 
works or simple , task - specific control mechanisms . Each of 
these components is illustrated in FIG . 2 and described 
below . 
[ 0110 ] With regard to input 203 , which illustratively com 
prises sensor array input and / or numerical data , Sapinet can 
accept as input any arbitrary set of C values , presented in 
parallel , or can be connected to any arbitrary battery of C 
sensors . Sapinet will periodically sample the state of these 
sensors in data sampling step 204 at a frequency controlled 
by the theta feedback loop . Each sample may be , for 
example , a simple reading , an average , or a weighted 
average over time . Samples that are averaged across a 
timespan can improve performance by reducing random 
sampling error noise . 
[ 0111 ] In the initialize network step 202 , Sapinet will 
construct a new network at initialization based on user 
specified parameters . In particular , the new network typi 
cally will be initialized with a number of principal neurons 
N equal to or larger than the number of sensor inputs C. Any 
or all of the available preprocessors 205 may be included in 
the newly initialized network . Note that some of these 
preprocessors 205 stream individual sensor inputs to mul 
tiple principal neurons ; additionally , individual principal 
neurons may receive input from just one sensor or combine 
inputs from multiple sensors . Accordingly , the selection of 
preprocessors and their parameters , together with the num 
ber of sensors C , determines the number of principal neurons 
Nin the newly initialized network . 
[ 0112 ] The nonplastic hyperparameters of a newly instan 
tiated network and the initial conditions of plastic param 
eters are tuned to the structure and scale of the network and 
the statistical structure of the inputs intended to be delivered 
to the core network of FIG . 2. Preprocessors 205 are utilized 
to ensure that arbitrary sensor input patterns are systemati 
cally conditioned to adhere to the requirements of the core 
network ; this ensures that Sapinet can productively respond 
to any arbitrary input profile ( this is referred to as the 
capacity for " learning in the wild " ) . 
[ 0113 ] Different types of preprocessors 205 can be instan 
tiated in any given network . These range from simple signal 

conditioning algorithms to specialized network components 
comprising additional neuron types ( e.g. , ET neurons , peri 
glomerular ( PG ) neurons ) and synaptic connection patterns 
that are embedded into the network during initialization . 
[ 0114 ] The core network of Sapinet comprises principal 
neurons 210 , interneurons 212 , and ( optionally ) an inference 
network 211 organized in a gamma feedback loop . This 
gamma feedback loop is periodic and exhibits an intrinsic 
processing frequency called the gamma cycle . Multiple 
gamma cycles ( e.g. , five ) are embedded within each data 
sample period ( successive samples are taken at the slower 
theta frequency as described above ) . During test sampling , 
these gamma cycles underlie attractor dynamics that enable 
the network to identify trained patterns under noisy condi 
tions . Sapinet can also deliver a “ none of the above ” result 
based on a user - specified level of certainty . 
[ 0115 ] The core network is initialized with a sparse degree 
of connectivity from principal neurons 210 to interneurons 
212 ; this connection density is a parameter of interest but a 
10-20 % random connectivity is typical . If an inference 
network is present , the connection densities from principal 
neurons 210 to the inference network input layer and from 
the inference network output layer to interneurons 212 are 
similarly sparse and random at initialization . In contrast , the 
connections from interneurons 212 onto principal neurons 
210 are specific and determined at initialization , generally 
with an equal , or roughly equal , number of interneurons set 
up to synaptically inhibit each principal neuron . Interneu 
rons are individually limited in the number of principal 
neurons that they inhibit ; the specific number is a parameter 
of interest . 
[ 0116 ] The principal neurons 210 integrate sensor infor 
mation following preprocessing , and emit spikes ( events , 
pulses ) as output . There are multiple specific implementa 
tions , but they share the property of spiking earlier within 
each gamma cycle in proportion to the strength of the 
sensory input that they are receiving . ( This “ phase prece 
dence code ” bypasses a common flaw of SNNs in which 
values are communicated via mean spike rates , hence requir 
ing substantial time and energy to be spent on a statistically 
reliable period of firing in order for downstream network 
elements to measure the mean rate ) . Earlier spikes are 
interpreted as stronger signals for pattern recognition ( Read 
out # 1 ) , and also are delivered to interneurons ( and to the 
inference network 211 if present ) . The plasticity rule for 
excitatory neuronal projections is sensitive to relative spike 
timings on the gamma scale , such that interneurons and the 
inference network input layer will adapt their receptive 
fields to principal neuron input during learning . 
[ 0117 ] The interneurons 212 receive synaptic excitation 
from principal neurons 210. As noted above , each interneu 
ron initially receives input from a randomly selected pro 
portion of principal neurons ( e.g. , 20 % ) drawn from across 
the entire principal neuron population . Interneurons spike 
when a sufficient number of their presynaptic principal 
neurons fire ( this number is illustratively the interneuron 
receptive field order k , and , in some embodiments , will vary 
among interneurons ) , and an excitatory synaptic plasticity 
rule strengthens those inputs from the principal neurons that 
caused the interneuron to fire and weakens the other inputs . 
This progressively narrows the field of effective inputs to a 
small number of principal neurons k , where the order k 
depends on factors such as the inhibitory neuron's spike 
threshold and the limit on the maximum excitatory synaptic 
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weight . Hence , individual interneurons learn to become 
responsive to diagnostic feature combinations of order k . 
They deliver their activity as inhibition onto principal neu 
rons , where it serves to delay principal neuron spike firing 
according to the inhibitory synaptic weight . This weight is 
determined by one of a set of inhibitory synaptic learning 
rules that depend on the structure of the network and the 
presence of an inference network . The effects of this syn 
aptic inhibition on principal neurons causes them to fire at 
different times in the next gamma cycle , thereby activating 
a different population of interneurons and evoking recurrent 
activity that exhibits attractor dynamics . 
[ 0118 ] The core network in some embodiments is illus 
tratively constructed with neuron populations exhibiting 
heterogeneous properties ( such as thresholds , initial synaptic 
weights , and maximum synaptic weights ) . Heterogeneous 
properties across the interneuron population ensures that 
different interneurons will exhibit different values of k , such 
that some interneurons are responsive to relatively common 
low - order diagnostic feature combinations and others are 
responsive only to rarer , higher - order diagnostic feature 
combinations . Heterogeneous properties among the princi 
pal neuron population can influence the particular popula 
tions of principal neurons that will constitute effective inputs 
to interneurons , and also contributes to the efficacy of the 
heterogeneous duplication preprocessor , as described else 
where herein in conjunction with heterogeneous duplication 
features of illustrative embodiments . 
[ 0119 ] The plastic network of the core feedback loop , 
consequently , is based on a simple matrix of excitatory 
inhibitory interactions ( FIG . 3 ) . An important aspect of the 
Sapinet algorithm in some embodiments is in the local 
learning rules that govern changes in these synaptic weights , 
and in the emergent properties that these learning rules 
engender , as will be described in more detail elsewhere 
herein . Sapinet natively performs few - shot online learning , 
and can be trained in a semi - supervised or unsupervised 
mode ( with post hoc labeling ) . More sophisticated instan 
tiations can learn correspondingly more sophisticated rep 
resentations . The SNN framework in which Sapinet is 
constructed further enables its instantiation on neuromor 
phic hardware such as the Intel Loihi research chip . This is 
of particular value because Sapinet benefits from the dimen 
sionality inherent in large numbers of sensors ( e.g. , to limit 
background interference under high - noise conditions ) , even 
when these sensors are not individually characterized . Spe 
cifically , it does not suffer from the " curse of dimensional 
ity ” ( i.e. , geometrically increasing computational load as 
dimensionality increases ) when implemented on appropriate 
hardware such as the Loihi chip ( FIG . 5B ) . 
[ 0120 ] With regard to the preprocessors 205 , neural net 
works typically require well - behaved input data . Specifi 
cally , nonplastic network hyperparameters are generally 
optimized for particular ranges and distributions of input 
amplitudes , and the network may perform poorly if these 
limits are violated . For example , mean input values that are 
much larger or smaller than the optimized range will often 
drive a network's state into uninteresting cul - de - sacs , 
whereas input values that are too unbalanced in their ampli 
tudes can lead to overtraining on the stronger inputs while 
failing to train on weaker inputs , thereby impairing the 
network's ability to learn the structure of the input data . For 
a network to operate smoothly on unprocessed , real - world 
datasets , preprocessor algorithms are needed to automati 

cally transform the resulting inputs into a form palatable to 
the network without losing the critical information that they 
contain . We have developed several such algorithms , as 
disclosed herein , any or all of which may be applied to raw 
input data ( whether numerical or from sensor arrays ) before 
presentation to the core Sapinet network . 
[ 0121 ] One example of a preprocessor that is utilized in 
illustrative embodiments herein is a heterogeneous duplica 
tion preprocessor of the type illustrated in FIG . 4 , as will 
now be described in more detail . 
[ 0122 ] Ordinal forcing solves the input - distribution prob 
lem , but it loses useful information about the relative ampli 
tudes of sensory inputs . To replace this , we developed a 
statistical regularization method that achieves the same 
outcome by employing two layers of input neurons with 
heterogeneously - weighted synapses , corresponding roughly 
to a matrix multiplication with randomized weights ( FIG . 4 ) . 
Specifically , within each column , sensors project to a het 
erogeneous set of excitatory feed - forward interneurons , 
rather than directly activating principal neurons . These 
excitatory neurons then project in turn ( sparsely and ran 
domly ) to a heterogeneous set of principal neurons ; the 
weights of these projections also are heterogeneous . The 
effect of this transformation ( following sensor scaling and 
global normalization ) is to standardize the distribution of 
activation levels across the incoming sensory streams , 
improving the capacity of the network to perform well under 
diverse , unpredictable environmental conditions . The prin 
cipal neurons at the right hand side of FIG . 4 are illustra 
tively part of the core network , and their outputs are applied 
to other portions of the core network , although numerous 
other arrangements are possible . 
[ 0123 ] Other examples of preprocessors that can be used 
in illustrative embodiments include the following : 
[ 0124 ] Sensor scaling . Neural network algorithms receiv 
ing sensor - array data implicitly assume that each sensor is 
weighted equally . Heterogeneous sensors or differently 
scaled input sources violate this assumption and will lead to 
impaired network performance . This compensatory prepro 
cessor algorithm rescales diverse sensors such that all inputs 
to the SNN are statistically similarly scaled . This can be 
achieved manually if different sensor input ranges are 
known ( e.g. , 5V sensors mixed with 1.8V sensors ) , or 
inferred based on training set data . Sensor scaling also 
improves performance when a substantial fraction of 
deployed sensors are not particularly sensitive to any fea 
tures of the dataset being analyzed , which typically occurs 
when the sampling strategy is to deploy a great diversity of 
sensors without established responsivity to the signals of 
interest . 

[ 0125 ] Non - topographical contrast enhancement ( NTCE ) . 
This is also referred to as high - dimensional contrast 
enhancement . This preprocessor algorithm applies an adjust 
able high - dimensional sharpening filter onto raw input pat 
terns for purposes of contrast enhancement . 
[ 0126 ] Unsupervised global normalization . This prepro 
cessor algorithm decrements the activity of all individual 
sensor inputs based on their mean , or widely projects 
all - to - all inhibition across sensor inputs , so as to limit the 
total input activation of the network to a narrow range 
without disrupting the relational pattern of amplitudes across 
sensors that is the basis for signal specificity . Generally , 
global normalization should be applied after sensor scaling 
if that preprocessor is also used . This algorithm also under 
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lies concentration tolerance ( also referred to as concentra 
tion invariance ) —the concomitant ability to recognize the 
same signal across a range of intensities even without 
explicit training on the full range of intensities tested . 
[ 0127 ] Mirror encoding . A related problem arises when 
multiple patterns ( classification groups ) are to be learned by 
an SNN , but one or more of these classification groups 
comprise substantially larger mean activity across sensors 
than others . This can lead to an imbalance in network 
training and a prevalence of one - sided classification errors . 
The process of mirror encoding generates a negative dupli 
cate of each sensory input ( doubling their number ) , then 
offsets and scales the resulting values if necessary . 
[ 0128 ] Ordinal forcing . Some versions of the Sapinet 
algorithm allow the network to determine the population of 
interneurons that is made available for differentiation during 
training ( rather than allocating separate populations explic 
itly ) . While this flexibility improves generalization perfor 
mance , it renders the network sensitive to the statistical 
distribution of input amplitudes , with broader , flatter distri 
butions systematically recruiting more interneurons . To 
address this problem , input levels are ranked and then 
assigned values drawn from a standard distribution as deter 
mined by their rank . This forces the input vector to conform 
to a single , optimized amplitude distribution . This strategy is 
fast and effective , though it loses substantial signal infor 
mation ; consequently , it is presently used mainly for testing 
purposes . It has been largely superseded by heterogeneous 
duplication . 
[ 0129 ] Several extensions and / or variants of Sapinet have 
been developed , as described in more detail elsewhere 
herein . 
[ 0130 ) Neuronal and synaptic heterogeneities . The ability 
to leverage heterogeneity has long been recognized in neu 
romorphic systems . Heterogeneities in the properties of 
principal neurons , interneurons , and their synapses in Sap 
inet variants improve statistical regularization , generaliza 
tion properties , and classification performance , expanding 
the capacity of the network to perform well under diverse , 
unpredictable environmental conditions . These heterogene 
ities include the heterogeneous duplication preprocessor 
described above , but also include heterogeneities in 
interneuron and principal neuron spiking thresholds , in the 
maximum synaptic weights that determine the feedback 
interneuron receptive field order k , in synaptic learning 
rates , in convergence and projection ratios , and in other 
cellular and synaptic properties , often specific to particular 
network layers . Each of these heterogeneities can provide 
improvements to network performance under particular cir 
cumstances . 
[ 0131 ] Neuromodulation . Neuromodulation broadly 
describes a constellation of interdependent state changes 
across a network that can dynamically reconfigure it for 
different purposes . An additional , novel extension to the 
neuromodulation concept in Sapinet is to implement neuro 
modulation as a trajectory across state configurations ( neu 
romodulatory sweep ) , such that the results of the best 
available state configuration can be applied to the current 
input stream without the need to introspectively assess 
which configuration to apply . We have shown this to 
improve classification performance under very high noise 
( FIG . 8 ( c ) ) . Second , neuromodulation also can be used to 
regulate the stringency of the non - topographical contrast 
enhancement preprocessor , in either a static or trajectory 

form . Third , neuromodulation within the inference network 
can be deployed to regulate the learning versus recall states , 
as has been proposed for the biological piriform cortex . In 
concert with other inference network properties , this func 
tion can improve " learning in the wild " performance by 
dynamically shifting between learning and recall modes 
without supervision ( e.g. , using an inference network ) . More 
broadly , Sapinet will broadly deploy the concept of transi 
tioning through orderly sequences of interdependent param 
eter states in order to increase the performance and adapt 
ability of the network . 
[ 0132 ] Adaptive network expansion ( ANE ) . Sapinet 
intrinsically excels at online learning — the ability to acquire 
new class memories without losing existing memories or 
requiring careful retraining protocols . Its extension , lifelong 
learning , describes the highly desirable property wherein 
these new class memories can be acquired indefinitely . 
Sapinet achieves online learning in part through the perma 
nent differentiation of feedback interneurons in the core 
network ; this process takes these differentiated interneurons 
out of the “ trainable ” population and hence limits the 
learning capacity of an instantiated network as the trainable 
interneuron population becomes depleted . However , Sapinet 
is able to add new , differentiable interneurons to an existing , 
trained network without disrupting the existing class memo 
ries ( adult neurogenesis ) . Accordingly , new interneurons can 
be added indefinitely to replace those that have been differ 
entiated out of the trainable pool , expanding the network in 
proportion to the number of different class memories that 
have been learned . 
[ 0133 ] The strict allocation and replacement of interneu 
rons described in conjunction with illustrative embodiments 
herein is straightforward and effective , but a more complex 
algorithm for the allocation and differentiation of GC 
interneurons increases the capacity of Sapinet to generalize 
among input patterns . This is referred to in the machine 
learning literature as “ learning beyond experience , ” a potent 
form of transfer learning . Specifically , a large undifferenti 
ated population of core network interneurons is provided for 
any encountered stimulus to differentiate . Distinct but simi 
lar input patterns therefore may share a fraction of their 
responsive interneurons even after full differentiation , 
thereby creating a basis for similarity . The challenge is to 
regulate the number of interneurons differentiated by any 
new representation irrespective of its internal statistics . The 
statistical regularization enabled by the heterogeneous 
duplication preprocessor , coupled with excitatory weight 
and interneuron threshold heterogeneities , enables this vari 
able to be managed ( e.g. , with heterogeneous duplication , as 
described above , replacing ordinal forcing ) . 
[ 0134 ] Under this interneuron recruitment model , fully 
differentiated interneurons are then replaced post hoc by 
new , trainable interneurons via ANE in order to enable 
lifelong learning . It should be noted that such references to 
replacement of differentiated interneurons herein do not 
imply that the differentiated interneurons are removed from 
the network . Instead , both the differentiated interneurons 
and the new interneurons now are embedded within the 
expanded network . ANE increases coding efficiency and 
reduces memory interference by allocating interneurons 
preferentially where they are most needed , and / or pursuant 
to the learning of specific fine discriminations between very 
similar sensor inputs ( supervised perceptual learning ) . ANE 
can also be applied to certain preprocessors ( e.g. , to the 
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inhibitory interneurons utilized by the non - topographical 
contrast enhancement and global normalization preproces 
sors ) and to certain instantiations of the inference network 
( e.g. , to support supervised perceptual learning ) , as illus 
trated in FIG . 2 . 
[ 0135 ] The inference network 211 illustratively has mul 
tiple levels of complexity that can encompass several dis 
tinct functions in the complete Sapinet network . 
[ 0136 ] A simple effect of an inference network is “ con 
textual priming , ” in which the priming of the interneuron 
population in the core feedback network enhances classifi 
cation performance ( e.g. , FIG . 8 ( d ) ) . This priming effect also 
can enable the sequential recognition of multiple known 
signals that may be simultaneously present , rather than 
forcing the network toward only a single conclusion . Con 
textual priming can also be deployed as part of a stimulus , 
to enable the correct parsing of a situation where the same 
signal should be classified differently depending on other 
situational factors that are not part of the signal . This 
priming signal of course can be determined based on a 
sensor or equivalent input , but this mechanism ( deploying 
the priming signal onto interneurons ) is a more powerful 
method of achieving such an outcome compared with com 
municating this contextual signal via additional standard 
sensor inputs . 
[ 0137 ] A slightly more complex version of the inference 
network conducts associative memory - like pattern comple 
tion operations , participating in the gamma cycle in parallel 
with the direct principal neuron- interneuron feedback loop 
and serving in part to counteract negative noise ( FIG . 2 ) . 
This form of inference network can increase the perfor 
mance and flexibility of a Sapinet network , incorporating 
two memory systems within a single recurrent attractor 
network . It also is capable of the “ neuromodulatory ” regu 
lation of learning vs. recall , as discussed above , enabling 
Sapinet to , for example , turn on learning whenever a stimu 
lus was not recognized ( i.e. , a “ none of the above ” outcome ) . 
Finally , in a “ hypothesis testing ” mode , this network also 
can drive priming effects so as to facilitate the recognition of 
multiple knowns within a single sample . 
[ 0138 ] A more sophisticated implementation of the infer 
ence network incorporates and enriches each of the above 
capabilities within a manifold learning context . Briefly , by 
constructing the more sophisticated , lifelong - learning ver 
sion of the core feedback network described above , simi 
larity can be more richly and specifically represented , and 
repeated sensory experiences then can be used to build 
explicit manifolds within the inference network to define 
class memories ( e.g. , via stacked sparse manifold trans 
forms ) . Among other potential advantages , this process 
enables two qualitatively new capacities to be developed : 
supervised perceptual learning and hierarchical classifica 
tion . Hierarchical classification enables classification mod 
els to be built where additional precision can be gained 
under favorable circumstances . A class of “ orange ” odors 
hence can be subdivided into “ Valencia orange , ” “ tanger 
ine , ” and “ clementine ” ( based on sufficient differential train 
ing ) . If a signal is not clean enough to identify with the 
desired certainty which of these three classes it falls into , it 
can be identified with greater certainty as the next broader 
hierarchical class ( equivalence class ; here corresponding to 
“ orange ” ) . In the absence of such hierarchy , training on these 
three finer - scale classes impairs the capacity to recognize the 
broader class . Supervised perceptual learning , in turn , 

enables the network to learn to more strongly differentiate 
two physically similar signals by learning to emphasize their 
reliable differences and elide their similarities by adjusting 
the allocation of inhibition . Essentially , relatively reliable 
sub - patterns are deployed in the same manner as the full 
patterns in order to remap similarity relationships in service 
to their relative implications rather than strictly to their 
physical natures . 
[ 0139 ] In these ways , manifold learning enables full 
instantiation of a similarity - based hierarchical learning 
scheme , in which poor - quality signals ( with substantial 
noise and inter - sample random differences ) can be accu 
rately identified as members of the broadest equivalence 
group of the class memory , whereas higher - quality , lower 
noise signals can additionally be sub - classified within finer 
scale equivalence groups within the hierarchical represen 
tation . That is , after training , “ wine ” could be identified 
under very high background interference , whereas a well 
trained Sapinet could , under low - noise circumstances , dis 
tinguish “ Merlot ” from “ Malbec . ” Like the mammalian 
olfactory system , this would of course require prior training 
to learn to differentiate the two varieties . In both cases , the 
primary limitation on classification precision ( as opposed to 
accuracy ) is the richness of training , and the secondary 
limitation is sampling error ( noise ) . 
[ 0140 ] A number of example use cases of illustrative 
embodiments will now be described in more detail . These 
example use cases may be viewed as carrying out particular 
automated actions using outputs generated by Sapinet . 
[ 0141 ] Sapinet is applicable to any problem based on the 
learning and classification of sensory input populations that 
do not exhibit relevant low - dimensional structure , such as 
the two - dimensional patterns of a visual image . This is likely 
to render Sapinet non - competitive in visual classification 
problems such as ImageNet and MNIST . However , a wide 
variety of applications are effectively addressed by Sapinet . 
It should be noted that , even beyond the algorithmic rel 
evance of Sapinet , the existence of energy - efficient neuro 
morphic hardware such as the Intel Loihi means that func 
tional embedded devices based on the Sapinet algorithms are 
achievable in the near term . Advantageously , Sapinet can be 
used with arbitrary sensor arrays of any sort , enabling an end 
user or applications developer to select sets of sensors that 
best match customer requirements . Sapinet can run on a 
variety of different types of processing platforms , including 
by way of example , generic GPU hardware and on the Intel 
Loihi platform . Some examples of Sapinet applications 
include : 
[ 0142 ] 1. Air quality monitoring , fire detection . Ongoing 
air quality monitoring is increasingly important in factories , 
mines , office buildings , laboratories , HVAC systems , and 
other environments including homes and schools . Sapinet 
based embedded devices can be standalone or networked 
devices , configured , for example , to report the presence of 
specific detected contaminants along with estimates of cer 
tainty . 
[ 0143 ] 2. Chemical waste identification , chemosensory 
landmine detection , acute disaster site chemical monitoring . 
Handheld devices with embedded neuromorphic hardware 
and arbitrary sensor arrays can be carried into challenging 
conditions and deployed to quickly identify airborne or 
dissolved chemicals ( depending on the sensor arrays uti 
lized ) . Sensor poisoning and time- or exposure - based sensor 
decay and drift can be compensated for in the field by rapid 
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retraining with standards . Similarly , replacement sensors 
can be quickly calibrated in the field in the same way . 
[ 0144 ] 3. Chemical species leak detection . Chemical spe 
cies sensor systems for leak detection are of specific interest 
to NASA and other industries . 
[ 0145 ] 4. Spectral signature identification . Hyperspectral 
cameras deployed by surveillance drones and aircraft pro 
duce single - pixel spectral signatures . These spectra , dis 
cretized into defined bands , are diagnostic for features of 
interest and are well matched to Sapinet's strengths . 
Because these signals vary in time , this is an application that 
would make use of the ongoing sampling mode of the 
Sapinet theta cycle . 
[ 0146 ] 5. Medical diagnostic dataset assessment . Diagnos 
tic datasets include arbitrary lists of measurements at arbi 
trary scales ; patterns among these measurements are diag 
nostic for clinical status . For example , the Wisconsin Breast 
Cancer dataset includes several measurements of cell nuclei : 
their areas , their radii , their perimeters , and definitions of 
texture , concavity , and fractal dimension , among others . 
These values each have different units and vastly different 
ranges of magnitude . With the appropriate preprocessors , 
these numbers can be used directly to train Sapinet and then 
to classify additional samples for malignancy with high 
fidelity . 
[ 0147 ] 6. Microarray and other gene or protein expression 
signatures . Applications include cancer diagnostics , risk 
factor assessment for genetic conditions , and many other 
biomedical assessments ; at present , a wide variety of analy 
sis techniques are being assessed and compared with one 
another for diagnostic reliability . Microarray signatures 
comprise large sets of sensor values ( i.e. , high - dimensional 
patterns ) without internal low - dimensional structure , and 
hence are well matched to Sapinet's strengths . Moreover , 
very high - dimensional patterns , which are computationally 
intensive to assess on hardware that is not highly parallel , 
can be analyzed very quickly with Sapinet on appropriate 
neuromorphic hardware ( FIG . 10 ( 6 ) ) . 
[ 0148 ] It is to be appreciated that the particular use cases 
described above are examples only , intended to demonstrate 
utility of illustrative embodiments , and should not be viewed 
as limiting in any way . Automated actions taken based on 
outputs generated by a neuromorphic algorithm of the type 
disclosed herein can include particular actions involving 
interaction between a processing platform implementing the 
neuromorphic algorithm and other related equipment uti 
lized in one or more of the use cases described above . For 
example , outputs generated by a neuromorphic algorithm 
can control one or more components of a related system . In 
some embodiments , the neuromorphic algorithm and the 
related equipment are implemented on the same processing 
platform , which may comprise a computer , mobile tele 
phone , handheld sensor device or other type of processing 
device . 
[ 0149 ] These and other Sapinet implementations are illus 
tratively configured to achieve the rapid even one - shot 
learning of multiple arbitrary signals in sequence and the 
subsequent detection of any of these signals under high 
levels of interference , even when the distribution of that 
interference is wholly unpredictable . 
[ 0150 ] Conventional techniques generally depend on sub 
stantial amounts of training ( hundreds or thousands of 
training trials , occupying many hours per sample ) . More 
over , this training in conventional implementations typically 

needs to encompass the actual variability in sample quality 
that will be encountered during testing . Such conventional 
approaches therefore need to know what that variability is , 
and this becomes a problem in environments where the 
background statistics may differ from those present under 
training conditions . Finally , in , these conventional 
approaches , all of the samples that one might want to detect 
and discriminate are trained at the same time ; in order to add 
a new sample later , network training is started over from 
scratch . 
[ 0151 ] Sapinet embodiments disclosed herein advanta 
geously overcome these and other drawbacks of conven 
tional practice , through implementation of features and 
functionality that illustratively include one or more of the 
following 
[ 0152 ] 1. The generation in the core network via learning 
of a heterogeneous population of permanently differentiated 
interneurons that respond to increasingly higher - order diag 
nostic features of a trained signal . 
[ 0153 ] 2. The implementation of in the core network ANE 
to enable lifelong learning . This illustratively refers to the 
addition of new , naïve neurons to replace those that are 
permanently differentiated by learning . This enables " life 
long learning ” by supplying enough new neurons to enable 
the subsequent learning of an indefinite number of new 
signals . Sapinet is particularly configured to facilitate such 
lifelong learning . 
[ 0154 ] 3. Preprocessing using heterogeneous duplication . 
This preprocessing technique reduces the statistical variabil 
ity of diverse input signals without significantly reducing 
their distinguishing features . With a preprocessor of this 
type , the network can be deployed into increasingly unpre 
dictable environments and process a broader range of inputs 
with high fidelity . 
[ 0155 ] 4. The implementation of a neuromodulatory 
sweep , using a dynamical trajectory of changing states in 
particular network elements to essentially re - compute net 
work output over a range of different network properties and 
then choose the best one . 
[ 0156 ] 5. The implementation of an inference network . 
This network in illustrative embodiments is highly hetero 
geneous ; it constitutes multiple central computations that 
improve performance . For example , the inference network 
inserts illustratively itself into the core network's feedback 
loop , further biasing the network into particular attractor ( s ) 
by extracting and / or providing additional information . This 
information can arise from richer learned representations 
( e.g. , manifold learning for hierarchical classification , as 
described elsewhere herein ) , or from prior information 
derived from other ( multimodal ) networks ( for example , on 
a robot , visual information might provide some cues as to 
which chemical cues are more likely , and the inference 
network can insert these priors into the core network to make 
a correct result that much more likely even when it is really 
difficult ) . Such embodiments integrate various types of rich 
information into the core network , by having the inference 
network also learn about the permanently differentiated 
interneurons and be able to associate these with arbitrary 
external sources of information . Its eventual effect is to bias 
some proportion of the " correct ” interneurons to improve 
performance ( e.g. , as illustrated in FIG . 8 ( d ) ) . 
[ 0157 ] 6. Many of the above techniques rely on a core 
principle of structured heterogeneity — that is , use a popu 
lation of slightly different elements ( or different states over 
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time ) to represent information in a distributed form , and use 
this distributed information to maximize performance . 
[ 0158 ] 7. Configuration of an SNN to use the phase ( fine 
scale timing ) of spikes within gamma oscillations as an 
information metric , and / or to self - modify a representation 
via feedback to learn and follow an attractor . 
[ 0159 ] These particular features and functionality of illus 
trative embodiments are presented by way of example only , 
and should not be considered as limiting in any way . 
[ 0160 ] These and other features and functionality in some 
embodiments achieve online learning and lifelong learning 
capabilities by , for example , implementing a gamma feed 
back loop for iterative denoising and odor identification , and 
using the specific phase ( timing ) of spikes within gamma as 
an information metric . 
[ 0161 ] In some embodiments , Sapinet provides what is 
referred to herein as “ learning in the wild , ” a term high 
lighting that such embodiments are deployable in diverse 
environments with unknown stimuli without needing to tune 
the network specifically for these environments . Such a 
property is particularly important in the context of practical 
embedded devices . 
[ 0162 ] Additional features and functionalities of some 
Sapinet embodiments include the following . 
[ 0163 ] 1. “ Online learning " is a term meaning that a 
network can keep learning new things without disrupting 
prior learning ( " catastrophic forgetting " ) . For example , Sap 
inet can learn a few signals , work to classify noisy signals 
for a while , and then be trained on one or more new signals 
that will simply add to that network's “ library ” of trained 
signals without disrupting the old ones or impairing its 
performance . In general , deep networks cannot do this , the 
new training not only takes a long time but disrupts the older 
training weights . 
[ 0164 ] 2. “ Lifelong learning ” is a central unsolved prob 
lem that is , for example , the focus of a major program at 
DARPA and elsewhere . Sapinet instantiates clear , effective 
lifelong learning , illustratively by the deployment of new 
interneurons into the network via ANE to replace those that 
have become dedicated , via learning , to recognizing a par 
ticular signal or group of signals . Again , such replacement 
does not imply that the dedicated interneurons are removed 
from the network . The network therefore gradually adds 
neurons over time , if and when new learning is performed . 
[ 0165 ] 3. One - shot ( or few - shot ) learning simply refers to 
the fact that the network can learn a representation effec 
tively after only one ( a few ) training exposure ( s ) , where one 
sample is processed over several gamma cycles . 
[ 0166 ] 4. “ Learning in the wild ” is our term for a set of 
properties including properties based on preprocessor capa 
bilities ) that enable Sapinet networks to be deployable in 
diverse environments with many unknowns , without need 
ing to tune the network specifically for these environments , 
as described previously . 
[ 0167 ] In some embodiments , the core network is config 
ured to allow Sapinet to rapidly learn input patterns ( par 
ticular odors or other particular signals ) and to identify them 
in the presence of powerful interference . The input pattern is 
presented to an array of principal neurons . Every individual 
sensor activates one ( or , in variants , more than one ) of these 
principal neurons . The pattern of activity across these sen 
sors is diagnostic for a given odor / signal , but can easily be 
disrupted by interference . 

[ 0168 ] The core network in some embodiments is con 
tinuously driven by two oscillatory frequencies ; the slower 
one governs sampling whereas the faster one ( " gamma ” ) 
governs processing . The faster oscillations are embedded 
within the slower one ; in some embodiments , there is a 
particular number of gamma cycles ( e.g. , five gamma 
cycles ) embedded within one sampling cycle ( though this 
ratio can vary ) . 
( 0169 ] Principal neurons each generate zero 
“ spike " ( activity pulses ) per gamma cycle . Strongly acti 
vated principal neurons evoke their spikes earlier in the 
gamma cycle , moderately weakly activated principal neu 
rons evoke spikes later in the gamma cycle , and very weakly 
activated principal neurons do not evoke a spike . This spike 
timing - dependent pattern of activity across these sensors 
directly reflects the raw activation levels of sensors , and 
hence also is diagnostic for a given odor / signal , but also can 
easily be disrupted by interference . 
[ 0170 ] There also is a large population of interneurons . 
Principal neurons are each connected to a random subset of 
these interneurons ( say , 20 % , though this can vary ) and 
excite them . Interneurons in turn are specifically assigned to 
deliver inhibition to the principal neurons associated with 
one given sensor ( this rule can be varied , but there will 
typically be some specificity ) . This inhibition will cause 
delays in principal neuron spike times . 
[ 0171 ] During training , relatively clean ( low - noise ) sig 
nals are used to train the network . Spiking activity in 
principal neurons activates interneurons . The interneurons 
have one or more embedded learning rules , illustratively 
implemented as one or more spike timing - dependent plas 
ticity ( STDP ) rules , that cause them to be activated only by 
sufficient numbers of inputs from different principal neu 
rons . When a given interneuron is activated , the one or more 
STDP rules ( over the course of a few gamma cycles ) adjust 
the synaptic weights of the starting inputs so that that 
interneuron now is only activatable by that specific set of k 
principal neuron inputs . This process is termed the differ 
entiation of an interneuron , and it is irreversible . Some 
number of interneurons is now selective for some higher 
order diagnostic feature of that odor / signal input . Important 
network variants include those in which the interneurons are 
heterogeneous such that some interneurons have relatively 
low values of k ( e.g. , they will be activated by the coacti 
vation of , say , three specific principal neurons ) and others 
have high k values ( e.g. , will only be activated by the 
coactivation of , say , fifteen specific principal neurons ) . An 
important principle here is that interneurons learn to become 
activated only by ( somewhat to highly ) specific and diag 
nostic features of learned odors / signals , and this learning is 
permanent . This process uses up interneurons every time a 
new odor / signal is learned . This is addressed in illustrative 
embodiments through the implementation of ANE function 
ality — the addition of new " naïve ” interneurons with ( for 
example ) 20 % random connectivity — so that new odors can 
be learned . 
[ 0172 ] These activated interneurons then inhibit the prin 
cipal neurons to which they are assigned . During training , 
the inhibitory synapses will progressively alter their effica 
cies so as to form attractors to the trained examples . In one 
illustrative embodiment , for example , an inhibitory synapse 
will learn to match the activity of its target principal neuron 
so that it releases that principal neuron from inhibition just 
at the time when the principal neuron spikes - guiding that 
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neuron to do what it would do anyway under low - noise 
conditions . There are variants to the specific details of this 
rule . 
[ 0173 ] During testing , odor / signal patterns may be dis 
rupted by presentation variabilities ( concentration differ 
ences , plume dynamics , etc. ) or by occlusion ( other back 
ground odors / signals add to or subtract from the activation 
of particular sensors , disrupting the pattern unpredictably ) . 
An important mechanism of Sapinet is that any diagnostic 
features that remain detectable in that disrupted signal will 
activate their corresponding interneurons ( initially the 
lower - k interneurons ) . These will deploy the " correct ” inhi 
bition onto principal neurons , affecting their spike timing 
such that the principal neurons more accurately reflect the 
odor / signal that is associated with those interneurons . This 
causes the principal neuron activity in the second gamma 
cycle to be a little bit closer to the memory of the learned 
odor / signal . The process then iterates , and starts recruiting 
higher - k interneurons as the activity pattern on each gamma 
cycle becomes closer to the learned odor / signal . After a 
number of gamma cycles , the principal neuron activity will 
converge onto a clear pattern that substantially matches one 
of the learned patterns . 
[ 0174 ] If the signal does not converge , then either the 
pattern was too occluded to be recognized or the odor / signal 
presented was not one of those that had been learned . In 
either case , the network illustratively returns an answer of 
“ none of the above . ” ( This would be a correct result in the 
latter case , or a Type II error in the former case ) . 
[ 0175 ] The initial presentation of an occluded test sample 
may well recruit lower - k interneurons from more than one 
learned representation . This is normal . As the gamma cycles 
iterate , the evolving representation will be drawn towards 
one or the other as the higher - k interneurons are recruited 
( because as k increases , the probability of multiple high - k 
interneurons from different learned representations being 
responsive to the same input pattern systematically 
decreases ) . 
[ 0176 ] That is , Sapinet learns representations during train 
ing that are embedded in the pattern of synaptic weights to 
and from a heterogeneous population of newly differentiated 
interneurons . These interneurons remain in the network 
permanently and generate an attractor in the network that 
pulls any representation toward it that shares some of its 
higher - order diagnostic features . If multiple attractors ini 
tially attract a given representation , one will eventually win 
as the higher - k diagnostic features are progressively 
included . 
( 0177 ] Multiple odors / signals can be learned in sequence , 
each forming its own attractor in the network . ( Odors / 
signals during training are labelled , so that a repeatedly 
presented odor can be used to modify its existing attractor 
rather than creating a separate attractor ) . Generally , learning 
a new odor / signal will be followed by the addition of new 
neurons via ANE— adding in new naïve interneurons to 
replace those that were differentiated by prior learning so 
that new odors / signals can be learned with maximal effec 
tiveness . This learning of new odors / signals can go on at any 
time without disrupting prior learning , and can in principle 
continue indefinitely ( “ lifelong learning ” ) . 
[ 0178 ] Because inputs are expected to be higher - dimen 
sional ( i.e. , a reasonably large number of sensors are 
deployed ) , these attractors can be kept substantially apart 
from one another . If very large numbers of odors / signals are 

to be learned , the dimensionality ( number of different sen 
sors ) can be made correspondingly higher to maintain per 
formance . 
[ 0179 ] Accordingly , the Sapinet core network in illustra 
tive embodiments is configured for generation via learning 
of a heterogeneous population of permanently differentiated 
interneurons that respond to increasingly higher - order diag 
nostic features of a trained signal . When a noisy signal is 
presented , some number of the lower - k diagnostic features 
are still likely to be present , and their activation of interneu 
rons will nudge the noisy signal closer to one or more of the 
trained signals . As this signal gets iteratively de - noised by 
this process , higher - k diagnostic features will become pres 
ent , and will increasingly serve to draw the signal towards 
just one of the learned representations . The permanent 
differentiation of interneurons also enables their efficient 
replacement so that the network remains ready to learn any 
new arbitrary signals that might be presented to it . 
[ 0180 ] As indicated previously , Sapinet performance can 
be improved via the addition of preprocessors , an expanded 
inference network , neuromodulation , and / or other features , 
as disclosed in conjunction with illustrative embodiments 
herein . 
[ 0181 ] With regard to preprocessors , an important prob 
lem in real - world deployments is the unpredictability of the 
environment . Sensors respond differently based on tempera 
ture , humidity , air quality , wear and tear over time , accu 
mulated damage , and other factors . Conventional training 
based systems , such as deep networks , have vulnerabilities 
to certain changes in the statistical distribution of inputs 
( see , e.g. , the substantial literature on “ adversarial 
examples , " which disrupt deep network performance using 
examples that usually appear easily classifiable to humans ) . 
Highly similar odor / signal patterns that have different mean 
ings can be difficult to separate reliably ( because their 
learned representations will share even higher - k differenti 
ated interneurons in common ) . The capacity of the Sapinet 
core network to effectively deal with these realistic problems 
can be substantially enhanced by its series of preprocessors . 
For example , preprocessors as disclosed herein are illustra 
tively configured to provide enhanced performance through 
heterogeneous duplication . 
[ 0182 ] Heterogeneous duplication serves to regularize the 
distribution of input levels across the sensor array . Simple 
normalization corrects for potentially large differences in 
absolute activity across the array , such that if you plotted the 
activation levels of sensors ( Y axis ) against a list of all 
sensors arranged in declining order of activation ( X axis ) the 
area under these curves could be made essentially constant . 
However , this still permits some inputs to yield broader / 
flatter versus taller / narrower distributions , and these can 
have different enough effects on interneuron activation pat 
terns that the network cannot be well optimized for both . 
Heterogeneous duplication takes these distributions and 
regularizes them so that they all assume a more common 
distribution . 
[ 0183 ] In some embodiments , a heterogeneous duplication 
method is configured such that , instead of each sensor 
directly feeding into a principal neuron ( after preprocess 
ing ) , each sensor feeds into one or more excitatory interneu 
rons , and these in turn each feed into one or more principal 
neurons . Hence , there will be multiple excitatory interneu 
rons and multiple principal neurons per sensor ( per col 
umn " ) , and each will have slightly heterogeneous properties 
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so as not to simply duplicate one another . Interestingly , this 
process leads to regularization among the activity patterns of 
principal neurons ( i.e. , the distribution of activity levels 
follows a more predictable curve that enables the core 
network that follows to be better optimized for a wider range 
of sensory inputs , without having to tune the network for 
particular input types ) . In some embodiments , heteroge 
neous duplication allows the coefficient of variation ( CV ) to 
be reduced ( or , equivalently , the coefficient of determination 
( R2 ) to be increased ) as the numbers of principal neurons 
( e.g. , MCs ) and excitatory feedforward interneurons ( e.g. , 
ET neurons ) per sensor ( column ) increase . For a given 
number of principal neurons per sensor / column , increasing 
the convergence ratio ( the number of excitatory interneurons 
that converge onto each principal neuron ) also reduces the 
coefficient of variation . Lower values of CV denote greater 
consistency , and in this context imply improved network 
performance . In some embodiments , the mechanistic basis 
for this heterogeneous duplication effect illustratively 
involves an effect of drawing the rate of decay of sensor 
activation levels ( across the principal neuron population 
after sorting for activation amplitude ) towards a decay 
function that is embedded in the degree and form of het 
erogeneity among the properties of the neurons . 
[ 0184 ] Additional illustrative embodiments will now be 
described with reference to FIGS . 5 through 10 . 
[ 0185 ] The embodiments to be described provide a neural 
algorithm for the rapid online learning and identification of 
odorant samples under noise , based on the architecture of the 
mammalian MOB and implemented on the Intel Loihi 
neuromorphic system . As with biological olfaction , the spike 
timing - based algorithm utilizes distributed , event - driven 
computations and rapid ( one - shot ) online learning . Spike 
timing - dependent plasticity rules operate iteratively over 
sequential gamma - frequency packets to construct odor rep 
resentations from the activity of chemosensor arrays 
mounted in a wind tunnel . Learned odorants then are reliably 
identified despite strong destructive interference . Noise 
resistance is further enhanced by neuromodulation and con 
textual priming . Lifelong learning capabilities are enabled 
by adult neurogenesis . The algorithm is applicable to any 
signal identification problem in which high - dimensional 
signals are embedded in unknown backgrounds . 
[ 0186 ] Spike timing - based mechanisms of coding and 
computation operating within plastic neural circuits present 
a central problem of interest to both neuroscience and 
neuromorphic computing . We have found that a coordinated 
set of these mechanisms , hypothesized for the neural cir 
cuitry of the external plexiform layer ( EPL ) of the mamma 
lian MOB , exhibits rapid learning of arbitrary high - dimen 
sional neural representations and robust memory recall 
despite occlusion by random sources of destructive interfer 
ence . Based on these mechanisms , we derived a neural 
algorithm for the learning of odorant signals and their robust 
identification under noise , and instantiated it in the Intel 
Loihi neuromorphic system . The algorithm operates over a 
network of excitatory and inhibitory units that embed feed 
forward and recurrent feedback circuit motifs . Information 
in the network is represented by sparse patterns of spike 
timing measured against an underlying network rhythm . 
Learning is based on local spike timing - dependent plasticity 
rules , and memory is retrieved over sequential gamma 
breadth packets of spiking activity . The network can be 
effectively trained using one - shot learning , and innately 

supports online learning ; that is , additional training on new 
stimuli does not disrupt prior learning . 
[ 0187 ] While both biological and artificial olfaction sys 
tems recognize chemical analytes based on activity patterns 
across arrays of weakly specific chemosensors , mammalian 
olfaction demonstrates levels of performance in signal res 
toration and identification currently unmatched by artificial 
systems . Indeed , the underlying identification problem is 
deceptively difficult . Natural odors comprise mixtures of 
many different odorant molecules ; moreover , under natural 
conditions , different odors from many separate sources 
intermingle freely and , when sampled together , chemically 
occlude one another in competition for primary chemosen 
sor binding sites . This occlusion substantially disrupts the 
primary sensory activation patterns that provide the basis for 
odor recognition . Moreover , the patterns of potential occlu 
sion are unrelated to the input statistics of the odors of 
interest , and hence unpredictable . This presents an extraor 
dinary signal restoration challenge that has been recognized 
as one of the central problems in neuromorphic olfaction . By 
designing a neuromorphic algorithm based on computa 
tional principles extracted from the biological system , and 
implementing it on a compact , field - deployable hardware 
platform , we sought to dramatically improve the perfor 
mance and capabilities of artificial chemosensory systems 
deployed into uncontrolled environments . 
[ 0188 ] This biological system exhibits several important 
properties and mechanisms that we used to address the 
problem . Primary sensory representations of odor stimuli at 
steady state constitute intrinsically high - dimensional feature 
vectors , the dimensionality of which is defined by the 
number of receptor types ( columns ) expressed by the olfac 
tory system ; this number ranges from the hundreds to over 
1000 in different mammalian species . Each of these receptor 
types induces spiking in a corresponding group of principal 
neurons ( e.g. , MCs ) . Mechanistically , fast coherent oscilla 
tions in the gamma band ( approximately 30-80 Hz ) , which 
are intrinsic to MOB circuitry , phase - restrict the timing of 
these MC action potentials . This property discretizes spiking 
output into gamma - breadth packets , here enabling a robust 
within - packet phase precedence code17 , 18 that disambigu 
ates phase - leading from phase - lagging spikes within the 
permissive epoch of each gamma cycle . Recurrent activity 
loops in MOB circuitry evince control systems architecture , 
implementing gain control in the superficial layers and 
enabling autoassociative attractor dynamics in the deeper 
network . Odor learning in the biological system is localized 
and rapid , and depends substantially on plastic synapses 
within the MOB , here instantiated as spike timing - depen 
dent plasticity rules . The neuromodulatory tuning of MOB 
circuit properties here is leveraged as an optimization tra 
jectory rather than a fixed state variable . Adult neurogenesis 
in the MOB , known to be required for odor learning and 
memory , here provides indefinite capacity for lifelong learn 
ing through the permanent differentiation and replacement 
of plastic interneurons . 
[ 0189 ] An example algorithm in the illustrative embodi 
ments to be described is derived from these computational 
properties of the EPL neural circuit in the biological MOB . 
We train and test the algorithm using data from the Vergara 
et al . dataset , acquired from an array of 72 chemosensors 
mounted across a wind tunnel , and show that it rapidly 
learns odor representations and robustly identifies learned 
odors under high levels of destructive interference , as well 
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as in the presence of natural variance arising from odorant 
plume dynamics . The destructive interference model , 
impulse noise , is designed to model the effects of inter 
mixed , simultaneously sampled background odorants that 
effectively randomize the activation levels of a substantial 
fraction of the primary sensors on which odor recognition 
depends . The algorithm exhibits online learning and gener 
alizes broadly beyond experience ; accordingly , it can be 
trained on relatively clean diagnostic samples using one - or 
few - shot learning and then deployed into environments 
containing unknown contaminants and other sources of 
interference . 
[ 0190 ] FIG . 5A shows a portion 500 of an SNN utilized in 
implementing a neuromorphic algorithm in an illustrative 
embodiment . More particularly , FIG . 5A illustrates the 
architecture of the neuromorphic model . Sensor input is 
delivered to the apical dendrite ( AD ) of each MC , which in 
turn excites its corresponding soma ( S ) . The resulting MC 
activation is propagated out via its lateral dendrites to 
synaptically excite the dendrites of GCs . The distribution of 
excitatory connections ( open circles ) is sparse and indepen 
dent of spatial proximity . In contrast , GC spiking activity is 
delivered as inhibition onto its local , cocolumnar MC . 
[ 0191 ] FIG . 5B shows an example of a processing device 
510 implementing a neuromorphic algorithm using an SNN 
in an illustrative embodiment . In this embodiment , the 
processing device 510 comprises an Intel Loihi neuromor 
phic chip having a multi - core network 512 that includes 64 
neuromorphic cores interconnected by a mesh of spike 
routers as illustrated . The neuromorphic cores ( small 
squares ) of the multi - core network 512 operate in parallel 
and communicate through the mesh of spike routers 
( circles ) . Also depicted are three embedded x86 Lakemont 
cores ( LMT ) 514 and four parallel input / output ( IO ) inter 
faces 516. The Loihi neuromorphic chip illustrated in the 
figure is fabricated in Intel's 14 nm FinFET process and 
includes 2.07 billion transistors over the many - core mesh . It 
is to be appreciated that use of the Intel Loihi neuromorphic 
chip in illustrative embodiments herein is by way of 
example only , and the disclosed neuromorphic algorithms 
can be implemented using a wide variety of alternative 
integrated circuits or other processing devices . 
[ 0192 ] FIG . 5C illustrates odorant delivery from an odor 
ant source 522 to a 72 - element chemosensor array 524 
deployed within a wind tunnel 526. Nine banks of eight 
sensors each were deployed across the full 1.2 m breadth of 
the wind tunnel 526. In this embodiment , presentation of 
acetone or toluene to the chemosensor array 524 resulted in 
characteristic patterns of spiking activity across the 72 MCs . 
Stronger sensor activation led to correspondingly earlier MC 
spikes within each gamma cycle . In the absence of noise , the 
response was odor - specific but stationary across five sequen 
tial gamma cycles . Adjacent indices refer to sensors that are 
in adjacent locations across the wind tunnel , irrespective of 
their type . Inhibitory epochs were 20 timesteps ( ts ) in 
duration , as were permissive epochs . 
[ 0193 ] These and other aspects of the illustrative embodi 
ments of FIGS . 5A , 5B and 5C are described in more detail 
below . 
[ 0194 ] The structure of the model network of FIG . 5A 
based on the circuitry and computational properties of the 
mammalian MOB , is optimized for efficient implementation 
as an SNN on the Loihi chip shown in FIG . 5B . In particular , 
we instantiated some core principles of MOB computation 

that we have hypothesized for the biological system , includ 
ing ( 1 ) the dynamically acquired , learning - dependent topol 
ogy of the lateral inhibitory network of the EPL , ( 2 ) the 
importance of gamma - discretized spike timing - based com 
putation in the EPL , ( 3 ) the principle that MCs deliver 
excitation to GCs irrespective of distance , whereas GCS 
effectively inhibit MCs only locally , and only via GC 
spiking , ( 4 ) the principle that this inhibition of MCs by GCs 
predominantly manifests as delays in MC spike times on the 
gamma timescale , ( 5 ) the principle that these fine - timescale 
EPL computations do not meaningfully influence the coarse 
timescale computations of the glomerular layer , ( 6 ) the 
principle that only a minority of principal neurons partici 
pate in gamma dynamics during any given stimulus presen 
tation , ( 7 ) the permanent differentiation of GCs by the 
process of odor learning , and the consequent need for 
replacement by adult neurogenesis , and ( 8 ) the utility of 
treating neuromodulation as an optimization trajectory 
rather than as a stationary state . 
[ 0195 ] Like the mammalian MOB , the neuromorphic EPL 
network is implicitly columnar , as illustrated in FIG . 5A . 
Each column comprises a single MC principal neuron as 
well as up to 50 inhibitory GC interneurons , coupled by 
moderately sparse intercolumnar excitatory synapses ( con 
nection probability = 0.2 ) and local ( intracolumnar ) inhibi 
tory synapses , although other arrangements can be used in 
other embodiments . We activated the MCs of a 72 - column 
EPL network using the “ Gas sensor arrays in open sampling 
settings ” dataset published by Vergara et al . and available 
from the UCI Machine Learning Repository . Samples were 
drawn from the chemosensor array 524 of 72 metal oxide 
gas sensor ( MOS ) elements spatially distributed across the 
full 1.2 m breadth of the wind tunnel 526 , as illustrated in 
FIG . 5C . From the 180 second datastreams comprising each 
odorant presentation in this dataset , sensor array responses 
were sampled ( “ sniffed ” ) from a common point in time and 
presented to the EPL network for training or testing . That is , 
individual odor samples ( “ sniffs ” ) comprised discrete fea 
ture vectors in which the pattern of amplitudes across vector 
elements reflected odor quality , as well as concentration 
based variance owing to plume dynamics in the wind tunnel . 
[ 0196 ] The biological EPL network is intrinsically oscil 
logenic in the gamma band ( 30-80 Hz ) , and MC action 
potentials are statistically phase - constrained with respect to 
these local oscillations . In our algorithm , MC spikes were 
constrained in time by an ongoing network oscillation with 
alternating permissive and inhibitory epochs reflecting the 
periodic inhibition of the MOB gamma cycle . Sensory 
integration and MC spiking were enabled only during per 
missive epochs , whereas inhibitory epochs reset and held the 
activation of all MCs at zero . Therefore , in the absence of 
learning , and given stationary sensor input , the temporal 
patterning of spikes evoked by a given odor directly 
reflected sensor activation levels stronger excitation 
evoked correspondingly earlier spikes and was repeated 
across successive gamma cycles . Different odors evoked 
correspondingly different spatiotemporal spike patterns 
across the MC population , thereby generating a hybrid 
channel / phase code , or precedence code , on the gamma 
timescale . 
[ 0197 ] This dynamical architecture advantageously 
enables multiple iterative cycles of processing for each 
sample by taking advantage of the differences in timescale 
between sampling ( 4-8 Hz in rodent sniffing , 100 Hz in the 
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Vergara et al . dataset ) and processing ( 30-80 Hz gamma 
oscillations in the rodent MOB , 100 kHz in the Loihi chip ) . 
In the present instantiation of the algorithm , five gamma 
cycles , each requiring 0.4 ms to execute , were embedded 
within each odor presentation ( “ sniff ” ) for both training and 
testing . After learning , GC feedback inhibition on each 
successive gamma cycle iteratively modified MC spike 
timing and hence altered the precedence code . Network 
output thus was interpreted as an evolving series of repre 
sentations , in which each discrete representation comprised 
a population of spikes , with each spike defined by the 
identity of the active MC and the spike latency within the 
corresponding gamma cycle . These representations then 
were classified based on their similarities to each of the 
representations known by the network . 
[ 0198 ] FIGS . 6A through 6C illustrate plasticity rules of a 
neuromorphic algorithm in illustrative embodiments . 
[ 0199 ] Referring initially to FIG . 6A , this diagram illus 
trates an excitatory plasticity rule . During training , repeated 
coincident MC spikes converging onto a given GC activated 
that GC , and developed strong excitatory synaptic weights 
thereon , whereas other inputs to that GC were weakened and 
ultimately eliminated . Excitatory plasticity rendered GCS 
selective to higher - order features of odor representations . 
For example , after training on toluene or acetone , a number 
of GCs became responsive to specific combinations of 
activated MCs . 
[ 0200 ] FIG . 6B illustrates an inhibitory plasticity rule . 
During training , the weight ( duration ) of spike - mediated GC 
inhibition onto its cocolumnar MC increased until the 
release of this inhibition coincided with spike initiation in 
the MC apical dendrite . The learned inhibitory weight 
corresponded to a blocking period AB during which spike 
propagation in the MC soma was suppressed . 
[ 0201 ] Turning now to FIG . 6C , an illustration of the 
iterative denoising of an occluded test sample is shown . 
Partially - correct representations in MCs evoke responses in 
some of the correct GCs , which deliver inhibition that draws 
MC ensemble activity iteratively closer to the learned rep 
resentation . Three permissive epochs interspersed with two 
inhibitory epochs are depicted . In the first permissive epoch , 
a partial overlap with a learned representation is shown , 
along with noise . MCs spike in the permissive phase of the 
gamma cycle and GCs spike in the inhibitory phase of the 
gamma cycle . In the third permissive epoch , a recall of the 
learned representation is shown . 
[ 0202 ] These and other aspects of the illustrative embodi 
ments of FIGS . 6A , 6B and 6C are described in more detail 
below . 
[ 0203 ] Excitatory Plasticity Determines GC Receptive 
Fields 
[ 0204 ] Each gamma - constrained array of MC action 
potentials , in addition to serving as network output , also 
drove its complement of postsynaptic GCs across the net 
work . During learning , the synaptic weights between MCs 
and GCs were systematically modified by experience . GCs 
were modeled as single - compartment neurons that accumu 
lated excitatory synaptic inputs from their widely distributed 
presynaptic MCs . Upon reaching threshold , they generated 
spike events that inhibited their cocolumnar postsynaptic 
MC in the subsequent gamma cycle . 
[ 0205 ] GC spiking also initiated excitatory synaptic plas 
ticity . Specifically , GCs learned to respond to higher - order 
stimulus features by becoming selective for specific combi 

nations of MC spiking activity . To do this , we implemented 
an STDP rule that learned these input combinations in terms 
of a spike phase precedence coding metric on the gamma 
timescale . Under initial conditions , GCs required moder 
ately synchronous spike inputs from several presynaptic 
MCs in order to evoke an action potential . Classical STDP 
most powerfully strengthens the synaptic weights of syn 
apses mediating presynaptic spikes that immediately pre 
cede a postsynaptic spike ; we implemented this principle 
with a heterosynaptic additive STDP rule that strengthened 
these synapses and weakened all other incoming synapses , 
including those in which the presynaptic MC spiked at other 
times or not at all ( FIG . 6A ) . Accordingly , spiking GCS 
ultimately learned a fixed dependency on the synchronous 
firing of a set of k MC inputs , with inputs from other MCs 
decaying to zero ( effectively a “ k winners take all ” learning 
rule ) . Consequently , at the end of the training period , the 
response to each trained odorant evoked a distributed 
ensemble of GCs tuned to a diversity of stimulus - specific 
higher - order correlation patterns . 
[ 0206 ] Inhibitory Plasticity Denoises MC Representations 
[ 0207 ] Spikes evoked by GC interneurons delivered syn 
aptic inhibition onto the MC of their local column . As 
proposed for the biological system , the weights of GC 
mediated inhibitory inputs regulated the timing of MC 
spikes within the permissive phase of the gamma cycle , with 
stronger weights imposing greater MC spike time delays 
within each gamma cycle . In the neuromorphic system , a 
GC spike blocked the generation of a spike on its follower 
MC for a period of time corresponding to the inhibitory 
synaptic weight . During odor learning , the durations of GC 
spike - evoked inhibitory windows were iteratively modified 
until the release of inhibition on the MC soma coincided 
with a threshold crossing in the MC apical dendrite resulting 
from integrated sensory input ( FIG . 6B ) . During testing , the 
end of the GC inhibitory window permitted the MC to fire , 
and evoked a rebound spike in the MC even in the absence 
of sufficient apical dendritic input . Synaptic inputs from 
multiple local GCs onto a common MC were independent of 
one another , enabling a diverse range of higher - order GC 
receptive fields to independently affect the MC . During 
testing , occluded inputs activated some fraction of GCs , 
which then modified their postsynaptic MC spike times such 
that the representation in the next gamma cycle was closer 
to a learned odorant , hence activating an increased fraction 
of its corresponding GCs . This process continued iteratively 
until the learned representation was recalled ( FIG . 6C ) . 
[ 0208 ] This inhibitory plasticity rule enables the EPL 
network to learn the timing relationships among MC spikes 
in response to a given odor stimulus . Consequently , because 
relative spike times signify MC activation levels , the net 
work effectively learns the specific ratiometric pattern of 
activation levels among MCs that characterizes a given odor . 
This spatiotemporal basis for odor representation enables a 
substantially greater memory capacity than would be pos 
sible with spatial patterning alone ; for example , two odors 
that activate the same population of MCs , but at different 
relative levels , can readily be distinguished by the trained 
network . Moreover , it consumes fewer spikes than rate 
coding metrics , and can be read out much more quickly 
because it does not need to integrate multiple spikes over 
time to estimate rate . Finally , this spike timing - based metric 
for relational encoding , coupled with odor - specific profiles 
of feedback inhibition , renders these memory states as 
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attractors , enabling incoming stimuli to be correctly classi 
fied by the trained network despite surprisingly high degrees 
of destructive interference . The trained EPL network thus 
comprises a spike - timing based autoassociator , embedding 
an arbitrary number of content - addressable memories . 
[ 0209 ] FIG . 7 is a set of graphical plots ( a ) through ( d ) 
showing aspects of odor learning in illustrative embodi 
ments . In an initial simulation , an occluded instance of 
toluene ( impulse noise P = 0.6 ) was presented to an untrained 
network . The untrained network does not update the 
response to occluded toluene over five gamma cycles . The 
same occluded instance of toluene is then presented to a 
plastic network trained on ( non - occluded ) toluene . It was 
found that the activity profile evoked by the occluded 
sample was attracted to the learned toluene representation 
over successive gamma cycles . Finally , the same occluded 
instance of toluene was presented to a network trained on 
non - occluded toluene with excitatory , but not inhibitory , 
plasticity enabled . The omission of inhibitory plasticity 
rendered the network unable to denoise MC representations 
during testing . 
[ 0210 ] FIG . 7 ( a ) shows the Jaccard similarity between the 
response to occluded toluene and the learned representation 
of toluene systematically increased over five gamma cycles 
in the trained network ( panel b ) , but not in the untrained 
network ( panel a ) or the network with inhibitory plasticity 
disabled ( panel c ) . 
[ 0211 ] FIG . 7 ( b ) illustrates that the Jaccard similarity 
increased reliably over five gamma cycles when averaged 
over 100 independently generated instances of occluded 
toluene ( impulse noise P = 0.6 ) . Error bars denote standard 
deviation . 
[ 0212 ] FIG . 7 ( c ) shows that , during learning , the number 
of GCs tuned to toluene increased over the five successive 
gamma cycles of training . 
[ 0213 ] FIG . 7 ( d ) shows mean Jaccard similarity in the fifth 
gamma cycle as a function of the number of undifferentiated 
GCs per column . Mean similarity is averaged across 100 
occluded instances of toluene ( impulse noise P = 0.6 ) ; error 
bars denote standard deviation . Five GCs per column were 
utilized for all other simulations described herein . 
[ 0214 ] These and other aspects of the illustrative embodi 
ments of FIG . 7 are described in more detail below . 
[ 0215 ] Odor Learning Enables Identification of Occluded 
Stimuli 
[ 0216 ] We first trained the 72 - column network on the 
odorant toluene in one shot ( i.e. , one sniff , enabling learning 
over five gamma cycles ) , and then , with plasticity disabled , 
tested the response of the trained network to presentations of 
toluene contaminated with destructive interference . To gen 
erate this interference , we entirely replaced a proportion Pof 
the sensory inputs with random values ( impulse noise , P = 0.6 
unless otherwise indicated ) to represent strong and unpre 
dictable receptor occlusion through simultaneous activation 
or inhibition by other ambient odorants . The occluded inputs 
remained consistent over the five gamma cycles of a sniff . In 
a naïve network , the presentation of occluded toluene 
yielded an essentially stationary and uninformative repre 
sentation ( FIG . 7 ( a ) ) . However , in the trained network , the 
spiking activity generated by occluded toluene was attracted 
over the five gamma cycles toward the previously learned 
toluene representation , enabling clear identification of the 
occluded unknown ( FIGS . 7 ( a ) -7 ( b ) ) . In contrast , if inhibi 
tory plasticity ( FIGS . 6B and 6C ) was suppressed during 

training , the trained EPL network was unable to denoise the 
MC representation ( FIG . 7 ( a ) ) . 
[ 0217 ] As hypothesized for the biological MOB , odor 
learning in the network induces the permanent differentia 
tion of granule cells ( FIG . 7 ( c ) ) that thereby become selec 
tive for higher - order feature combinations that are relatively 
diagnostic of the learned odor . We tested whether increased 
allocations of GCs , enabling each MC to be inhibited by a 
broader selection of feature combinations , would improve 
odor learning and identification under noise . We found that 
increasing the number of undifferentiated GCS per column 
improved the robustness of signal restoration , increasing the 
similarity of the occluded signal to the learned representa 
tion after five gamma cycles ( FIG . 7 ( d ) ) . Nevertheless , we 
limited our simulations to five GCs per trained odorant and 
five gamma cycles per sniff in order to avoid ceiling effects 
and thereby better reveal the variables of greatest interest . 
[ 0218 ] These illustrative embodiments also illustrate that adult neurogenesis enables lifelong learning . The learning 
algorithm in the present embodiments irreversibly consumes 
GCs . Each odor memory is associated with a distributed 
population of differentiated GCs tuned to its complex diag 
nostic features . Fully differentiated , mature GCs do not 
undergo further plasticity and hence are protected from 
catastrophic interference . The learning of successively pre 
sented new odorants , however , would be increasingly handi 
capped by the declining pool of undifferentiated GCs ( FIG . 
7 ( d ) ) . The competition among distinct new odorants can be 
substantially reduced by sparser initial MCGC connec 
tivity and higher numbers of GCs , among other parameters ; 
however , genuine lifelong learning in such a system requires 
a steady source of undifferentiated GCs . Exactly this 
resource is provided to the mammalian olfactory system by 
constitutive adult neurogenesis . The important role of adult 
neurogenesis in odor learning is therefore interpreted in this 
light , in some embodiments herein . 
[ 0219 ] In the neuromorphic algorithm , constitutive adult 
neurogenesis was simulated by configuring a new set of five 
GCs in every column after each successively learned odor 
stimulus . Hence , training a 72 - column network on ten odors 
yielded a network with 3600 differentiated GCs . New GCs 
each received initial synaptic connections from a randomly 
selected 20 % of the MCs across the network , and delivered 
inhibition onto their cocolumnar MC . 
[ 0220 ] FIG . 8 is a set of graphical plots ( a ) through ( d ) 
showing aspects of multi - odor learning in illustrative 
embodiments . The network was trained on ten odorants , 
including toluene , acetone , methane , ammonia and benzene . 
[ 0221 ] A representation generated by a sample of occluded 
toluene ( P = 0.6 ) was progressively drawn towards the 
learned representation of toluene and away from the learned 
representations of acetone and the other eight odorants . 
[ 0222 ] FIG . 8 ( a ) shows the Jaccard similarity to toluene 
that was evoked by the occluded - toluene stimulus increased 
over five successive gamma cycles until the stimulus was 
classified as toluene ( similarity > 0.8 ) . For clarity , only the 
above - noted five odorants are depicted . 
[ 0223 ] FIG . 8 ( 6 ) shows that the number of toluene - tuned 
GCs activated by the occluded - toluene stimulus progres 
sively increased over five gamma cycles as the MC spiking 
activity pattern was attracted towards the learned toluene 
representation . GCs tuned to the other nine odorants were 
negligibly recruited by the evolving stimulus representation . 



US 2022/0198245 A1 Jun . 23 , 2022 
20 

[ 0224 ] Additional simulations measured network activity 
evoked by presentation of occluded instances of each of the 
ten learned odors following one - shot learning . It was found 
that the same network can reliably recognize all ten odorants 
from substantially occluded examples ( P = 0.6 ) . 
[ 0225 ] FIG . 8 ( c ) shows mean classification performance 
across all ten odorants under increasing levels of sensory 
occlusion ( 100 impulse noise instantiations per odorant per 
noise level ) . The abscissa denotes the level of impulse noise , 
that is , the proportion of MC inputs for which the sensory 
activation level was replaced with a random value . This 
figure shows the proportion of correct classifications by an 
untrained network , the proportion of correct classifications 
by a network trained on all ten odorants , and the proportion 
of correct classifications by a trained network with the aid of 
a neuromodulation - dependent dynamic state trajectory . 
[ 0226 ] FIG . 8 ( d ) illustrates the effects of GC priming on 
classification performance under extreme occlusion . One 
hundred independently generated samples of occluded tolu 
ene with impulse noise P = 0.9 were presented to the fully 
trained network . The putative effects of priming arising from 
piriform cortical projections onto bulbar GCs were modeled 
by lowering the spike thresholds of a fraction of toluene 
tuned GCs . As the fraction of toluene - tuned GCs so acti 
vated was increased , classification performance increased 
from near zero to over 80 % correct . 

[ 0227 ] These and other aspects of the illustrative embodi 
ments of FIG . 8 are described in more detail below . 
[ 0228 ) Online Learning of Multiple Representations 
[ 0229 ] We then trained the 72 - column network sequen 
tially with all ten odorants in the dataset , using a one - shot 
training regimen for each odor . In each case , the network 
was trained on one odor first , followed by a second odor , 
then by a third , until all ten odors had been learned . Similar 
results were obtained irrespective of the order in which the 
ten odorants were trained . A set of new , undifferentiated GCS 
was added to the network after each odor was learned , 
reflecting the effects of adult neurogenesis . It should be 
noted that subsequent odor training did not disrupt the 
memories of previously learned odors ; that is , the EPL 
network supports robust online learning , and is resistant to 
catastrophic forgetting . This capacity for online learning is 
important for memory formation under natural conditions , 
as well as for continuous device operation in the field ; in 
either case , new signals of potential significance may be 
encountered at unpredictable times , and incorporated non 
destructively into an existing knowledge base . 
[ 0230 ] We then tested the algorithm's capacity to recog 
nize and classify odorant samples that were strongly 
occluded by impulse noise , reflecting the effects of any 
number of independent odorous contaminants that could 
mask the odor of interest in uncontrolled environments . 
Following training on all ten odorants , sensor - evoked activ 
ity patterns generated by strongly occluded odor stimuli 
( impulse noise P = 0.6 ) were attracted specifically towards 
the learned representation of the corresponding odor . Nota 
bly , the same network was able to rapidly identify occluded 
instances of all ten odors within five gamma cycles . An odor 
was considered identified when the spatiotemporal pattern of 
its evoked spiking activity exceeded a Jaccard similarity of 
0.75 to one of the network's learned representations . Per 
formance on this dataset under standard conditions was 

strong up to sample occlusion levels of P = 0.6 , after which 
increased occlusion began to gradually impair classification 
performance ( FIG . 8 ( c ) ) . 
[ 0231 ] Neuromodulation and Cortical Priming Improve 
Classification Performance 
[ 0232 ] Neuromodulators like acetylcholine and nora 
drenaline generate powerful effects on stimulus representa 
tions and plasticity in multiple sensory systems including 
olfaction . Traditionally , they are treated as state variables 
that may sharpen representations , gate learning , or bias a 
network towards one source of input or another . We instead 
modeled neuromodulatory effects as a dynamic search tra 
jectory . Specifically , as the neuromodulator is released in 
response to active olfactory investigation ( sampling ) , the 
local concentration around effector neurons and synapses 
rises over the course of successive sniffs , potentially 
enabling the most effective of the transient neuromodulatory 
states along that trajectory to govern the outcome of the 
stimulus identification process . We implemented a gradual 
reduction in the mean GC spiking threshold over the course 
of five sniffs of a corrupted odor signal , reflecting a con 
comitant increase in neuromodulator efficacy , and used the 
greatest of the five similarity values measured in the last 
gamma cycle within each sniff to classify the test odorant . It 
should be noted that , under very high noise conditions , each 
of the five “ neuromodulatory ” states performed best for 
some of the test odors and noise instantiations , indicating 
that a trajectory across a range of neuromodulatory states 
could yield superior classification performance compared to 
any single state . Indeed , this strategy yielded a substantial 
improvement in classification performance at very high 
levels of impulse noise , approximately doubling classifica 
tion performance at P = 0.8 ( FIG . 8 ( c ) ) . 
[ 0233 ] In the biological system , MOB activity patterns 
resembling those evoked by a specific odor can be evoked by 
contextual priming that is predictive of the arrival of that 
odor . We implemented this as a priming effect exerted by 
ascending piriform cortical neurons that synaptically excite 
GCs in the MOB , the mapping between which can be 
learned dynamically . Specifically , we presented the network 
with odor samples at an extreme level of destructive inter 
ference ( P = 0.9 ) that largely precluded correct classification 
under default conditions ( FIG . 8 ( c ) ) . When fractions of the 
population of GCs normally activated by the presented odor 
were primed by lowering their spike thresholds , classifica 
tion performance improved dramatically , to a degree corre 
sponding to the fraction of primed GCS ( FIG . 8 ( d ) ) . That is , 
even a weak prior expectation of an incoming odor stimulus 
suffices to draw an extremely occluded odor signal out of the 
noise and into the attractor . 
[ 0234 ] FIG . 9 is a set of graphical plots ( a ) and ( b ) 
showing aspects of odor learning with plume dynamics in 
illustrative embodiments . 
[ 0235 ] In these simulations , ten sniffs of toluene were 
drawn from randomly - selected timepoints within the dataset 
to illustrate sampling variance arising from plume dynamics . 
It was found that the same network reliably recognized all 
ten odorants from plume - varying and substantially occluded 
examples ( P = 0.4 ) . 
[ 0236 ] FIG . 9 ( a ) shows that the Jaccard similarity to 
toluene that was evoked by the occluded , plume - varying 
toluene stimulus increased over five successive gamma 
cycles until the stimulus was classified as toluene ( similarity 
> 0.8 ) . For clarity , only five odorants are depicted . 

a 
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[ 0237 ] FIG . 9 ( b ) shows mean classification performance 
across all ten odorants , with plume dynamics , under increas 
ing levels of sensory occlusion ( 100 impulse noise instan 
tiations per odorant per noise level ) . The abscissa denotes 
the level of impulse noise . The curve shows the proportion 
of correct classifications by a network trained on all ten 
odorants . 
[ 0238 ] These and other aspects of the illustrative embodi 
ments of FIG . 9 are described in more detail below . 
[ 0239 ] Sample Variance Arising from Plume Dynamics 
[ 0240 ] In addition to occlusion by competing odorants , 
odor samples can vary based on the dynamics of their 
plumes ( FIG . 5C ) , which evolve over time . We therefore 
tested the algorithm's ability to recognize and classify 
samples of each odorant that were drawn from the wind 
tunnel at different points in time . Specifically , in this para 
digm , repeated samples of the same odorant differed from 
one another based on evolving odor plume dynamics , 
whereas samples of different odorants differed from one 
another both in plume dynamics and in the distribution of 
analyte sensitivities across the sensor array . Following one 
shot training on all ten odors as described above , the spiking 
activity generated by odorant test samples was attracted over 
the five gamma cycles towards the corresponding learned 
representation . Notably , plume dynamics alone constituted a 
relatively minor source of variance compared to impulse 
noise . 
[ 0241 ] We then tested the network on samples incorporat 
ing both plume dynamics and impulse noise ( P = 0.4 ) . Fol 
lowing one - shot training on all ten odors , we sampled each 
odor across widely dispersed points in time , and contami 
nated each sniff with an independent instantiation of impulse 
noise . Spiking activity was again attracted over the five 
gamma cycles of each sniff towards the correct learned 
representation ( FIG . 9 ( a ) ) . Classification performance 
across levels of impulse noise from P = 0.0 to P = 1.0 ( FIG . 
9 ( b ) ) indicated that the addition of plume - based variability 
moderately reduced network performance ( compare to FIG . 
8 ( c ) ) . Network performance was not affected by the intro 
duction of noise correlations over time . 
[ 0242 ] FIG . 10 is a set of graphical plots ( a ) through ( g ) 
showing aspects of performance of a neuromorphic algo 
rithm using an SNN in illustrative embodiments . 
[ 0243 ] FIG . 10 ( a ) illustrates classification performance of 
the EPL network in comparison to four other signal pro 
cessing techniques . Raw , classification of unprocessed sen 
sor signals . MF , median filter . TVF , total variation filter . 
PCA , principal components analysis . DAE , a seven - layer 
deep autoencoder . EPL , the neuromorphic EPL model . Each 
of the 10 odorants was presented with 100 dependent 
instantiations of impulse noise , yielding 1000 total test 
samples . 
[ 0244 ] FIG . 10 ( b ) shows that the performance of the DAE 
improved when it was explicitly trained to map a variety of 
occluded instances of each odor to a common representa 
tion . To achieve performance superior to the one - shot 
trained EPL network , the DAE required 3000 occluded 
training samples per odorant . In this figure , the abscissa is 
the number of training samples per odorant ( s / o ) , and the 
ordinate is the classification performance ( % ) . 
[ 0245 ] FIG . 10 ( c ) illustrates online learning . After training 
naïve EPL and DAE networks with toluene , both recognized 
toluene with 100 % accuracy . After then training the same 
network with acetone , the DAE learned to recognize acetone 

with 100 % accuracy , but was no longer able to recognize 
toluene ( catastrophic forgetting ) . In contrast , the EPL net 
work retained the ability to recognize toluene after subse 
quent training on acetone . 
[ 0246 ] FIG . 10 ( d ) shows gradual loss of the toluene rep 
resentation in the DAE during subsequent training with 
acetone . The ordinate denotes the similarity of the toluene 
evoked activity pattern to the original toluene representation 
as a function of the number of training epochs for acetone . 
Values are the means of 100 test samples . The inset shows 
similarity between the toluene - evoked activity pattern and 
the original toluene representation in the EPL network 
before training with acetone ( left ) and after the completion 
of acetone training ( right ) . 
[ 0247 ] FIG . 10 ( e ) illustrates similarity between the tolu 
ene - evoked activity pattern and the original toluene repre 
sentation as the EPL network is sequentially trained on all 10 
odorants of the dataset . Values are the means of 100 test 
samples . 
[ 0248 ] FIG . 10 / ) illustrates that the execution time to 
solution is not significantly affected as the EPL network size 
is expanded , reflecting the fine granularity of parallelism of 
the Loihi architecture . In the present implementation , one 
Loihi core corresponds to one MOB column . 
[ 0249 ] FIG . 10 ( g ) illustrates that the total energy con 
sumed increases only modestly as the EPL network size is 
expanded . 
[ 0250 ] These and other aspects of the illustrative embodi 
ments of FIG . 10 are described in more detail below . 
[ 0251 ] Classification Performance of the Neuromorphic 
Model 
[ 0252 ] To evaluate the performance of the EPL model , we 
compared its classification performance to the performance 
of multiple conventional signal processing techniques : a 
median filter ( MF ) , a total variation filter ( TVF ; both com 
monly used as impulse noise reduction filters ) , principal 
components analysis ( PCA ; a standard preprocessor used in 
machine olfaction ) , and a seven - layer deep autoencoder 
( DAE ) . Specifically , following training , we averaged the 
classification performance of each method across 100 dif 
ferent occluded presentations of each odor , with the occlu 
sion level for each sample randomly and uniformly selected 
from the range P = [ 0.2 , 0.8 ] , for a total of 1000 test samples . 
Incorrect classifications and failures to classify both were 
scored as failures . 
[ 0253 ] The neuromorphic EPL substantially outperformed 
MF , TVF , and PCA . To model “ one - sample ” learning on the 
DAE for comparison with one - shot learning on the EPL 
network , we trained a DAE with one sample from each of 
the ten odorants over 1000 training epochs per odorant , with 
the odorants intercalated in presentation . The EPL network 
substantially outperformed the DAE under these conditions , 
in which the training set contained no information about the 
distribution of error that would arise during testing owing to 
impulse noise ( FIG . 10 ( a ) ) . To improve DAE performance , 
we then trained it with 500 to 7000 samples of each of the 
ten odorants , with each sample independently occluded by 
impulse noise randomly and uniformly selected from the 
range P = [ 0.2 , 0.8 ] . Under this training regimen , the deep 
network required 3000 samples per odorant , including the 
attendant information regarding the distribution of testing 
variance , to achieve the classification performance that the 
EPL model achieved with 1 sample per odorant . With further 
training , DAE performance exceeded that of the EPL net 
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work ( FIG . 10 ( b ) ) . We then tested the online learning 
capacities of the two networks , in which the presentations of 
different odorants during training were sequential rather than 
uniformly interspersed . After training both networks to 
recognize toluene using the methods of FIG . 10 ( 6 ) , both the 
EPL and the DAE exhibited high classification performance . 
However , after subsequent training to recognize acetone , the 
DAE lost its ability to recognize toluene , whereas the EPL 
network recognized both odors with high fidelity ( FIGS . 
10 ( c ) -10 ( d ) ) . Susceptibility to catastrophic forgetting is a 
well - established limitation of deep networks , though some 
customized networks recently have shown improvements in 
their online ( continual ) learning capabilities that reflect 
some of the strategies of the EPL network , such as the 
selective reduction of plasticity in well - trained network 
elements . 
[ 0254 ] These results indicate that the EPL network ulti 
mately serves a different purpose than techniques that 
require intensive training with explicit models of expected 
variance in order to achieve optimal performance . The EPL 
network is competitive with these algorithms overall , but 
excels at rapid , online learning with the capacity to gener 
alize beyond experience in novel environments with unpre 
dictable sources of variance . In contrast , the DAE evaluated 
here performs best when it is trained to convergence on data 
drawn from the distribution of expected variance ; under 
these conditions , its performance exceeds that of the present 
EPL network . EPL network instantiations are thereby likely 
to be favored in embedded systems intended for deployment 
in the wild , where rapid training , energy - efficiency , robust 
ness to unpredictable variance , and the ability to update 
training with new exemplars are at a premium . 
[ 0255 ] The EPL algorithm , while derived directly from 
computational features of the mammalian olfactory system , 
essentially comprises a spike timing - based variant of a 
Hopfield autoassociative network , exhibiting autoassocia 
tive attractor dynamics over sequential gamma - breadth 
packets of spiking activity . Since their conception , Hopfield 
networks and their variants have been applied to a range of 
computational problems , including sparse coding , combina 
torial optimization , path integration , and oculomotor con 
trol . Because these studies typically model neural activity as 
continuous - valued functions ( approximating a spike rate ) , 
they have not overlapped significantly with contemporary 
research investigating spike - timing - based mechanisms of 
neural coding and computation mechanisms that are lev 
eraged in contemporary neuromorphic systems to achieve 
massive parallelism and unprecedented energy efficiency . 
The EPL algorithm combines insights from these two bodies 
of w instantiating autoassociative attractor dynamics 
within a spike timing framework . By doing so , it proposes 
novel functional roles for spike timing - dependent synaptic 
plasticity , packet - based neural communications , active neu 
romodulation , and adult neurogenesis , all instantiated within 
a scalable and energy - efficient neuromorphic platform ( FIG . 
10 ( G ) -10 ( g ) ) . 
[ 0256 ] Contemporary artificial olfaction research often 
emphasizes the development of sensors and sensor arrays . 
Associated work on the processing of electronic nose sensor 
data incorporates both established machine learning algo 
rithms and novel analytical approaches , as well as optimi 
zations for sensory sampling itself . The biological olfactory 
system has both inspired modifications of traditional ana 
lytical methods and guided biomimetic approaches to signal 

identification in both chemosensory and non - chemosensory 
datasets . In comparison to these diverse approaches , illus 
trative embodiments disclosed herein incorporate multiple 
innovations relating , for example , to the rapid learning of the 
EPL network , its spike timing - based attractor dynamics , its 
performance on identifying strongly occluded signals , and 
its field - deployable Loihi implementation . 
[ 0257 ] The illustrative embodiments described in conjunc 
tion with FIGS . 5 through 10 demonstrate that a simplified 
network model , based on the architecture and dynamics of 
the mammalian MOB and instantiated in the Loihi neuro 
morphic system , can support rapid online learning and 
powerful signal restoration of odor inputs that are strongly 
occluded by contaminants . These results evince powerful 
computational features of the early olfactory network that , 
together with mechanistic models and experimental data , 
present a coherent general framework for understanding 
mammalian olfaction as well as improving the performance 
of artificial chemosensory systems . Moreover , this frame 
work is equally applicable to other steady - state signal iden 
tification problems in which higher - dimensional patterns 
without meaningful lower - dimensional internal structure are 
embedded in highly interfering backgrounds . 
[ 0258 ] Additional details regarding methods applied in 
testing of the illustrative embodiments will now be 
described . 
[ 0259 ] Dataset and Odorant Sampling 
[ 0260 ) Sensory input to the model was generated from the 
" Gas sensor arrays in open sampling settings " dataset pub 
lished by Vergara et al . and available from the UCI Machine 
Learning Repository . The dataset comprises the responses of 
72 metal - oxide based chemical sensors distributed across a 
wind tunnel . There are six different sensor mounting loca 
tions in the tunnel , three different settings of the tunnel's 
wind speed and three different settings of the sensor array's 
heater voltage . In the present embodiments , we consider the 
recordings made at sensor location “ L4 ” ( near the mid - point 
of the tunnel ) , with the wind speed set to 0.21 m s ' and the 
heater voltage set to 500 V. The tunnel itself was 1.2 m 
widex0.4 m tallx2.5 m long , with the sensors deployed in 
nine modules , each with eight different sensors , distributed 
across the full 1.2 m width of the tunnel at a location 1.18 
m from the inlet ( FIG . 5C ) . The nine modules were identical 
to one another . To maintain the generality of the algorithm 
rather than optimize it for this particular dataset , we here 
sampled the 72 sensors naïvely , without in any way cross 
referencing inputs from the nominally identical sensors 
replicated across the nine modules , or attempting to mitigate 
the plume - based variance across these sensors . The turbu 
lent plume shown in FIG . 5C is illustrative only ; distribution 
maps of local concentrations in the plume , along with full 
details of the wind tunnel configuration , are provided in the 
publication first presenting the dataset . 
[ 0261 ] Ten different odorants were delivered in the gas 
phase to the sensor array : acetone , acetaldehyde , ammonia , 
butanol , ethylene , methane , methanol , carbon monoxide , 
benzene , and toluene . For every tunnel configuration , each 
of these odorants was presented 10-20 times , and each 
presentation lasted for 180 seconds . In the present embodi 
ments , we consider one of these 180 - second plumes ( chosen 
at random ) for each odorant . 
[ 0262 ] We discretized each sensor's range of possible 
responses into 16 levels of activation , corresponding to 16 
time bins of the permissive epoch of each gamma cycle . The 
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discretized sensor values were composed into a 72 - dimen 
sional sensor activity vector , which then was sparsened by 
setting the smallest 50 % of the values to zero . Accordingly , 
each odorant sample ( “ sniff ” ) presented to the EPL network 
comprised a discrete 72 - element sensor vector drawn from 
a single point in time and presented as steady state . The 
training set underpinning one - shot learning was based on 
single - timepoint samples drawn from the 90 second time 
point in each of the 180 second long odorant presentations . 
Test sets for the impulse - noise - only studies ( FIGS . 7-8 ) 
comprised these same timepoints , each altered by 100 dif 
ferent instantiations of impulse noise . For the plume - vari 
ance studies ( FIG . 9 ) , test samples for each odorant were 
drawn from different time points in the corresponding plume 
( specifically , across the range 30-180 seconds after odorant 
presentation , at 5 second intervals ) and were presented to the 
network both with and without added impulse noise . 
[ 0263 ] The MOB EPL model therefore was instantiated 
with 72 columns , such that each column received afferent 
excitation proportional to the activation level of one sensor . 
Because we here present the network in its simplest form , 
we treated the 72 columns as independent inputs , without 
crafting the algorithm to combine the responses of duplicate 
sensor types , to weight the centrally located sensors more 
strongly , or to perform any other dataset - specific modifica 
tions that might improve performance . Each model MOB 
column comprised one principal neuron ( e.g. , an MC ) and 
initially five GC interneurons that were presynaptic to that 
MC ( for a total of 360 GCs across all columns ) , though the 
number of GCs per column rose as high as 50 in other 
examples of highly trained models described herein . MCs 
projected axons globally across all columns and formed 
excitatory synapses onto GCs with a uniform probability of 
0.2 ( 20 % ) . Each GC , in turn , synaptically inhibited the MC 
within its column with a probability of unity ( 100 % ) . GCS 
did not inhibit MCs from other columns , though this con 
straint can be relaxed without affecting overall network 
function . To reflect the mapping of the algorithm to the 
physical layout of the Loihi chip , we consider an MC and its 
co - columnar GCs to be spatially local to one another . 
However , there is no computational basis for the physical 
locations of neurons in the model ; an MOB column is simply 
“ an MC plus those inputs that can affect its activity . ” 
[ 0264 ] Intrinsic Gamma and Theta Dynamics 
[ 0265 ] In the biological system , the profile of spike times 
across MCs is proposed to reflect a phase precedence code 
with respect to the emergent gamma - band field potential 
oscillations generated in the olfactory system . Spike timing 
based coding metrics are known to offer considerable speed 
and efficiency advantages ; however , they require computa 
tional infrastructure in the brain to realize these benefits . 
Fast oscillations in the local field potential are indicative of 
broad activity coherence across a synaptically coordinated 
ensemble of neurons , and thereby serve as temporal refer 
ence frames within which spike times in these neurons can 
be regulated and decoded . Accordingly , these reference 
frames are important components of the biological system's 
computational capacities . 
[ 0266 ] In the MOB , gamma oscillations emerge from 
interactions of the subthreshold oscillations of MCs with the 
network dynamics of the EPL ( PRING dynamics ) . For 
present purposes , the importance of these oscillations was 
twofold : ( 1 ) MC spike phases with respect to the gamma 
band oscillations serve as the model's most informative 

output , and ( 2 ) by considering each oscillation as embedding 
a distinct , interpretable representation , repeated oscillations 
enable the network to iteratively approach a learned state 
based on stationary sensory input . Notably , in vivo , piriform 
cortical pyramidal neurons are selectively activated by con 
vergent , synchronous MC spikes , and established neural 
learning rules are in principle capable of reading such a 
coincidence - based metric . Because MC spike times can be 
altered on the gamma timescale by synaptic inhibition from 
GCs , and their spike times in turn alter the responsivity of 
GCs , these lateral inhibitory interactions can iteratively 
modify the information exported from the MOB . In the 
neuromorphic EPL , each MC periodically switched between 
two states to establish the basic gamma oscillatory cycle . 
These two states were an active state in which the MC 
integrated sensory input and generated spikes ( permissive 
epoch ) and an inactive state in which the excitation level of 
the MC was held at zero , preventing sensory integration and 
spike generation ( inhibitory epoch ) . The effects of the plastic 
lateral inhibitory weights from GCs were applied on top of 
this temporal framework . The correspondence with real time 
is arbitrary and hence is measured in timesteps ( ts ) directly ; 
that said , as Loihi operates at about 100 kHz , each timestep 
corresponds to about 10 us . In the present implementation , 
the permissive epoch comprised 16 ts and the inhibitory 
epoch 24 ts , for a total of 40 ts per gamma cycle . Notably , 
the duration of the permissive epoch directly corresponds to 
the number of discrete levels of sensory input that can be 
encoded by our spike timing - based metric ; it can be 
expanded arbitrarily at the cost of greater time and energy 
expenditures . 
[ 0267 ] A second , slower , sampling cycle was used to 
regulate odor sampling . This cycle is analogous to theta 
band oscillations in the MOB , which are driven primarily by 
respiratory sampling ( sniffing ) behaviors but also by cou 
pling with other brain structures during certain behavioral 
epochs . Each sampling cycle ( “ sniff ” ) consisted of a single 
sample and steady - state presentation of sensory input across 
five gamma cycles of network activity . The number of 
gamma cycles per sampling cycle can be arbitrarily deter 
mined in order to regulate how much sequential , iterative 
processing is applied to each sensory sample , but was held 
at five for all experiments herein . 
[ 0268 ] It should be noted that these differences between 
the slower sampling timescale and the faster processing 
timescale can be leveraged to implement " continuous ” 
online sampling , in which each sample can be processed 
using multiple computational iterations prior to digitizing 
the next sample . In the present implementation , for example , 
the Vergara et al . dataset sampled odorants at 100 Hz 
sample every 10 ms . On Loihi , operating at 100 kHz , the 200 
timesteps ( 5 gamma cycles ) used for the processing of a 
single sniff require a total of around 2 ms . As this is five 
times faster than the sampling rate of the sensors , there 
would be no update to sensor state during the time required 
for five cycles of processing . 
[ 0269 ] Mitral Cells 
[ 0270 ] Each MC was modeled by two compartments 
apical dendrite ( AD ) compartment that integrated sensor 
input and generated “ spike initiation ” events when an acti 
vation threshold was crossed , and a soma compartment that 
was excited by spike initiation events in the AD compart 
ment and synaptically inhibited by spikes evoked in coco 
lumnar GCs . The soma compartment propagated the AD 
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initiated spike as an MC action potential after release from 
GC inhibition . Accordingly , stronger sensory inputs initiated 
earlier ( phase - leading ) spikes in MCs , but the propagation of 
these spikes could be delayed by inhibition arising from 
presynaptic GCs . Distinguishing between these two MC 
compartments facilitated management of the two input 
sources and their different coding metrics , and reflected the 
biophysical segregation between the mass - action excitation 
of MC dendritic arbors and the intrinsic regulation of MC 
spike timing governed by the gamma - band oscillatory 
dynamics of the MOB EPL . 
[ 0271 ] Sensor activation levels were delivered to the AD 
compartment of the corresponding column , which integrated 
the input during each permissive epoch of gamma . If and 
when the integrated excitation exceeded threshold , a spike 
initiation event was generated and communicated to the 
soma compartment . Stronger inputs resulted in more rapid 
integration and correspondingly earlier event times . After 
generating an event , the AD was not permitted to initiate 
another for the duration of that permissive epoch . 
[ 0272 ] A spike initiation event in the AD generated a unit 
level of excitation ( +1 ) in the soma compartment for the 
remainder of the permissive epoch . This excitation state 
caused the MC soma to propagate the spike as soon as it was 
sufficiently free of lateral inhibition received from its pre 
synaptic GCs . Accordingly , the main effect of GC synaptic 
inhibition was to modulate MC spike times with respect to 
the gamma cycle . The resulting MC spikes were delivered to 
the classifier as network output , and also were delivered to 
its postsynaptic GCs . 
[ 0273 ] During the first gamma cycle following odor pre 
sentation , when GC inhibition was not yet active , the soma 
immediately propagated the MC spike initiated in the AD . 
After propagating a spike , the soma was not permitted to 
spike again for the duration of the permissive epoch . At the 
end of the permissive epoch , both the AD and soma com 
partments were reset to zero for the duration of the inhibitory 
epoch . 
( 0274 ] Granule Cells 
[ 0275 ] GCs were modeled as single - compartment neu 
rons , 

initiated in a given GC per gamma cycle . In general , 
convergent excitation from multiple MCs was required for 
GC spike initiation . 
[ 0278 ] Excitatory Synaptic Plasticity 
[ 0279 ] The weights of MC - to - GC synapses were initial 
ized to a value of we . Following an asymmetric , additive 
spike timing - dependent plasticity rule , these synaptic 
weights were modified during training following a spike in 
the postsynaptic GC . Specifically , synapses in which the 
presynaptic MC spike preceded the postsynaptic GC spike 
by 1 timestep were potentiated by a constant value of op 
whereas all other synapses were depressed by a constant 
value of dd . In the present embodiments , we set d , to 0.05we 
and da to 0.2we . GC spiking thresholds were set to Ewe . 
[ 0280 ] The overall effect of this rule was to develop sparse 
and selective higher - order receptive fields for each GC , a 
process termed differentiation . Specifically , repeated coin 
cidences of the same MC spikes resulted in repeated poten 
tiation of the corresponding synapses , whereas synapses of 
other MCs underwent repeated depression . Individual excit 
atory synaptic weights were capped at a value of 1.25we , 
ensuring that the spiking of differentiated GCs remained 
sensitive to coincident activity in a particular ensemble of 
MCs , the number of which constituted the order of the GC 
receptive field . By this process , odor learning transformed 
the relatively broad initial receptive field of a GC into a 
highly selective one of order M. These higher - order recep 
tive fields reflected correlations between components of 
individual sensor vectors — i.e . , the higher - order signatures 
of learned odors . Differentiated GCs thereby developed 
selectivity for particular odor signatures and became unre 
sponsive to other sensory input combinations . While in 
principle this GC output can be used directly for classifica 
tion purposes , the present algorithm instead deploys it to 
denoise the spike timing - based MC representation . Because 
there are many fewer MCs than GCs , there is a correspond 
ing reduction in bandwidth and energy consumption by 
using MCs to communicate the representation for classifi 
cation or further processing . 
[ 0281 ] Adult Neurogenesis 
[ 0282 ] The process of GC differentiation permanently 
depleted the pool of interneurons available for recruitment 
into new odor representations . To avoid a decline in perfor 
mance as the numbers of odors learned by the network 
increased , we periodically added new , undifferentiated GC 
interneurons to the network on a timescale slower than that 
of the synaptic plasticity rules — a process directly analogous 
to adult neurogenesis in the MOB . Specifically , the network 
was initialized with five GCs per column , as described 
above . After the learning of each new odor , an additional set 
of five undifferentiated GCs was configured in every col 
umn . As with the initial network elements , every MC in the 
network formed excitatory synapses onto new GCs with a 
probability of 0.2 ( 20 % ) , and the new GCs all formed 
inhibitory synapses onto their cocolumnar MCs with initial 
inhibitory weights of zero . 
[ 0283 ] Inhibitory Synaptic Plasticity 
[ 0284 ] In the neuromorphic model , inhibitory synapses 
from presynaptic GCs onto their cocolumnar MC somata 
exhibited three functional states . The default state of the 
synapse was an inactive state I , which exerted no effect on 
the MC ( i.e. , equal to 0 ) . When a spike was evoked in the 
GC , the synapse transitioned into an inhibitory blocking 
state B ; this state was maintained for a period of time Ag that 

V = EW SK ( 1 ) 

[ 0276 ] in which Vindicates the excitation level of the GC , 
Wz represents the excitatory synaptic weight from a presyn 
aptic MC soma k , and k was summed over all presynaptic 
MCs . The boolean term Sk denotes a spike at the k - th 
presynaptic MC soma ; Sk equals 0 at all times except for the 
d - th timestep following a spike in the k - th MC soma , when 
it was set to 1. Accordingly , d denotes a delay in the receipt 
of synaptic excitation by a GC following an MC spike . This 
delay d was randomly determined , synapse - specific , and 
stable ( i.e. , not plastic ) ; it reflects heterogeneities in spike 
propagation delays in the biological system and served to 
delay GC excitation such that GC spikes were evoked within 
the inhibitory epoch of gamma . 
[ 0277 ] A spike in an MC soma k that was presynaptic to 
a given GC excited that GC in proportion to its synaptic 
weight WK Once GC excitation rose above a threshold OGC , 
the GC generated a spike and reset its excitation level to 
zero . Following a spike , the GC was not permitted to spike 
again for 20 timesteps , ensuring that only one spike could be 
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was determined by learning . While in this state , the synapse 
maintained a unit level of inhibition ( equal to -1 ) in the 
postsynaptic MC soma that inhibited somatic spike propa 
gation . The blocking period Ag therefore governed MC spike 
latency , and corresponded functionally to the inhibitory 
synaptic weight . At the end of the blocking state , the synapse 
transitioned to a release state R for 1 timestep , during which 
it generated a unit level of excitation ( equal to +1 ) in the 
postsynaptic MCsoma . The synapse then resumed the 
inactive state . An MC soma propagated a spike when the 
sum of the excitation and inhibition generated by its apical 
dendrite and by the synapses of all of its presynaptic GCS 
was positive . After spiking once , the MC soma was not 
permitted to spike again for the duration of that gamma 
cycle . 
[ 0285 ] All inhibitory synaptic weights in new GCs were 
initialized to Ag = 0 ts . During training , additionally , the 
effects of inhibition on MC somata were suppressed . If an 
MC AD initiated a spike within the permissive epoch 
immediately following a cocolumnar GC spike in the 
previous inhibitory epoch ) , the blocking period Ag imposed 
by that GC onto the soma of that MC was modified based on 
the learning rule 

dy = n ( tad - tr ) 
[ 0286 ] where O , is the change in the blocking period Ag 
( inhibitory synaptic weight ) , tad is the time of the MC spike 
initiation event in the AD , IR is the time at which the 
inhibitory synapse switched from the blocking state to the 
release state , and n was the learning rate ( set to 1.0 in the 
one - shot learning studies presented here ) . Consequently , the 
synaptic blocking period Ag was modified during training 
( rounding up fractions ) until the release of inhibition from 
that synapse was aligned with the spike initiation event in 
the MC AD ( FIG . 6B ) . If the GC spike was not followed by 
an MC spike initiation event during the following permis 
sive epoch , the inhibitory weight Ap of that synapse grew 
until that MC was inhibited for the entire gamma cycle . 
Inputs from multiple local GCs onto a common MC were 
applied and modified independently . 
[ 0287 ] In total , this inhibitory synaptic plasticity rule 
enabled the EPL network to learn the timing relationships 
between GC spikes and cocolumnar MC spikes associated 
with a given odor stimulus , thereby training the inhibitory 
weight matrix to construct a fixed - point attractor around the 
odor representation being learned . This served to counteract 
the consequences of destructive interference in odor stimuli 
presented during testing . It should be noted that this plas 
ticity rule effectively learned the specific ratiometric patterns 
of activation levels among MCs that characterized particular 
odors ; consequently , two odors that activated the same 
population of MCs , but at different relative levels , could be 
readily distinguished . 
[ 0288 ] Testing Procedures 
[ 0289 ) After training , we tested the network's perfor 
mance on recognizing learned odorants in the presence of 
destructive interference from unpredictable sources of olfac 
tory occlusion ( impulse noise ) , alone or in combination with 
variance arising from sampling plume dynamics at different 
timepoints . All testing was performed with network plastic 
ity disabled . 
[ 0290 ] The responses of primary olfactory receptors to a 
given odorant of interest can be radically altered by the 
concomitant presence of competing background odorants 

that strongly activate or block some of the same receptors as 
the odorant of interest , greatly disrupting the ratiometric 
activation pattern across receptors on which odor recogni 
tion depends . We modeled this occlusion as destructive 
impulse noise . Specifically , an occluded test sample was 
generated by choosing a fraction P of the 72 elements of a 
sensor activity vector and replacing them each with random 
values drawn uniformly from the sensors ' operating range 
( integer values from 0 to 15 ) . When multiple occluded test 
samples were generated to measure average performance , 
both the identities of the occluded elements and the random 
values to which they were set were redrawn from their 
respective distributions . 
[ 0291 ] Odor plume dynamics comprise a second source of 
stimulus variance encountered under natural conditions . To 
test network performance across this variance , we drew test 
samples from different timepoints within the odor plumes . 
Specifically we drew 30 samples per plume at 5 second 
intervals between 30 seconds and 180 seconds within the 
180 second datastreams . After one - shot training with a 
single sample , we tested network performance on the other 
samples , with and without the addition of impulse noise 
( FIG . 9 ) . 
[ 0292 ] While certain of the present embodiments focus on 
one - shot learning , the network can also be configured for 
few - shot learning , in which it gradually adapts to the under 
lying statistics of training samples . In this configuration , the 
network learns robust representations even when the training 
samples themselves are corrupted by impulse noise . 
[ 0293 ] Sample Classification 
[ 0294 ] The pattern of MC spikes in each successive 
gamma cycle was recorded as a set of spikes , with each spike 
defined by the identity of the active MC and the spike 
latency with respect to the onset of that permissive epoch . 
Accordingly , five successive sets of spikes were recorded for 
each sample “ sniff . ” When an impulse noise - occluded 
sample was presented to the network , the similarities were 
computed between each of the five representations evoked 
by the unknown and each of the network's learned odor 
representations In descriptive figures ( but not for compari 
sons with other methods ) , the similarity between two rep 
resentations was measured with the Jaccard index , defined 
as the number of spikes in the intersection of two represen 
tations , divided by the number of spikes in their union . 
Specifically , the permissive epoch of a gamma cycle 
included 16 discrete timesteps in which MCs could spike ; 
these 16 bins were used for Jaccard calculations . Test 
samples were classified as one of the network's known 
odorants if the similarity exceeded a threshold of 0.75 in the 
fifth ( final ) gamma cycle . If similarities to multiple learned 
odorants crossed the threshold , the odorant exhibiting the 
greatest similarity value across the five gamma cycles was 
picked as the classification result . If none of the similarity 
values crossed the threshold within five gamma cycles , the 
odorant was classified as unknown . This combination of 
nearest - neighbor classification and thresholding enabled the 
network to present “ none of the above ” as a legitimate 
outcome . Summary figures each consist of averages across 
100 independent instantiations of impulse noise , and / or 
averages across 30 different test samples drawn from dif 
ferent timepoints in the datastream ( without or with added 
impulse noise ) , for each odor in the training set . 
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[ 0295 ] Benchmarks 
[ 0296 ] We first compared the classification performance of 
the EPL network to three conventional signal processing 
techniques : a median filter ( MF ) , a total variation filter 
( TVF ) , and principal component analysis ( PCA ; FIG . 
10 ( a ) ) . The MF and TVF are filters commonly used in signal 
processing for reducing impulse noise , while PCA is a 
standard preprocessor used in machine olfaction applica 
tions . The MF used a window size of 5 , and was imple 
mented with the Python signal processing library scipy . 
signal . The TVF used a regularization parameter equal to 
0.5 , and was implemented using the Python image process 
ing library scikit - image . PCA was implemented using the 
Python machine learning library scikit - learn ; data were 
projected onto the top five components . 
[ 0297 ] Corrupted input signals also can be denoised by 
training an autoencoder , a modern rendition of autoassocia 
tive networks . We therefore compared the performance of 
the EPL network to a seven - layer deep autoencoder con 
structed using the Python deep learning library Keras . The 
seven layers consisted of an input layer of 72 units , followed 
by five hidden layers of 720 units each and an output layer 
of 72 units . This resulted in a network of 3744 units , 
identical to the number in the EPL model when trained with 
ten odors . The network was fully connected between layers , 
and the activity of each unit in the hidden layers was L1 
regularized . The network was trained with iterative gradient 
descent until convergence using the Adadelta optimizer with 
a mean absolute error loss function . Its training set consisted 
of 7000 examples per odorant class . For the same training 
set , the performance of this seven - layer autoencoder 
exceeded that of shallower networks ( 6- , 5- , 4- , and 3 - layer 
networks were tested ) . 
[ 0298 ] For direct comparison , the outputs of all of these 
methods , including that of the EPL network , were presented 
to the same nearest - neighbor classifier for sample classifi 
cation according to a Manhattan distance metric . Specifi 
cally , for each of the techniques , the output was read as a 
72 - dimensional vector and normalized such that their ele 
ments summed up to a value of unity . ( In the case of the EPL 
network , the spiking output in each gamma cycle was read 
out as a 72 - dimensional rank - order vector and normalized so 
that the elements summed to unity ) . The similarity between 
any two such vectors was measured as ( 1 / ( 1 + d ) ) where d is 
the Manhattan distance between the two vectors . Classifi 
cation performance was measured by computing this simi 
larity between the output of training data samples and those 
of test data samples . A test data sample was classified 
according to the identity of the training data sample to which 
it was most similar , provided that this similarity value 
exceeded a threshold of 0.75 ( thresholding enabled the 
inclusion of a “ none of the above ” outcome ) . 
[ 0299 ] We trained the DAE in three different ways for fair 
comparison with EPL network performance . First , the DAE 
was trained using the same ten non - occluded odor samples 
that were used to train the EPL model . These ten samples 
underwent 1000 training epochs to ensure training conver 
gence . This method assesses DAE performance on " one 
sample ” learning , for comparison with the one - sample / one 
trial learning of the EPL network ( FIG . 10 ( a ) ) . Second , we 
trained the DAE on multiple impulse noise - occluded 
samples , so as to maximize its performance . Specifically , we 
trained the DAE on 500 to 7000 training samples , where 
each sample comprised an independently occluded instance 

of each of the ten odorants . Each training set was presented 
for 25 training epochs to ensure convergence . The occlusion 
levels for each training sample were drawn from the same 
distribution as the test samples , being randomly and uni 
formly selected from the range P = [ 0.2 , 0.8 ] . With this 
procedure , we show that the DAE requires 3000 training 
samples per odorant to achieve the classification perfor 
mance that the EPL model achieved with 1 training sample 
per odorant ( FIG . 10 ( c ) ) ; i.e. , the EPL model is 3000 times 
more data efficient than the DAE . Third , we trained the DAE 
and EPL models first on one odorant ( toluene ) and then , 
subsequently , on a second odorant ( acetone ) in order to 
compare the models ' sequential online learning capabilities . 
After training on toluene , the DAE classified test presenta 
tions of toluene with high fidelity ( FIG . 10 ( C ) ; left panel ) . 
However , over the course of acetone training , the similarity 
between test samples of toluene and the learned represen 
tation of toluene progressively declined ( FIG . 10 ( d ) ) , to the 
point that the DAE network became unable to correctly 
classify toluene ( FIG . 10 ( c ) , right panel ) . In contrast , train 
ing the EPL network with acetone exhibited no interference 
with the preexisting toluene representation ( FIG . 10 ( d ) , 
inset ) . The similarity between test samples of toluene and 
the learned representation of toluene was not affected as the 
EPL learned all of the ten odorants in sequence ( FIG . 10 ( e ) ) . 
[ 0300 ) Implementation on the Loihi Neuromorphic Sys 
tem 

[ 0301 ] Neuromorphic systems are custom integrated cir 
cuits that model biological neural computations , typically 
with orders of magnitude greater speed and energy efficiency 
than general - purpose computers . These systems enable the 
deployment of neural algorithms in edge devices , such as 
chemosensory signal analyzers , in which real - time opera 
tion , low power consumption , environmental robustness , 
and compact size are important operational metrics . Loihi , a 
neuromorphic processor developed for research at Intel 
Labs , advances the state of the art in neuromorphic systems 
with innovations in architecture and circuit design , and a 
feature set that supports a wide variety of neural computa 
tions . Below we provide an overview of the Loihi system 
and our network implementation thereon . 
[ 0302 ] Loihi is fabricated in Intel's 14 - nm FinFET process 
and realizes a total of 2.07 billion transistors over a many 
core mesh . Each Loihi chip contains a total of 128 neuro 
morphic cores , along with three embedded Lakemont x86 
processors and external communication interfaces that 
enable the neuromorphic mesh to be extended across many 
interlinked Loihi chips ( FIG . 5B ) . Each neuromorphic core 
comprises leaky - integrate - and - fire compute units that inte 
grate filtered spike trains from a configurable set of presyn 
aptic units and generate spikes when a threshold level of 
excitation is crossed . Postsynaptic spikes then are commu 
nicated to a configurable set of target units anywhere within 
the mesh . A variety of features can be configured in a core , 
including multicompartment interactions , spike timing - de 
pendent learning rules , axonal conduction delays , and neu 
romodulatory effects . All signals in the system are digital , 
and networks operate as discrete - time dynamical systems . 
[ 0303 ] We configured each column of our model within 
one neuromorphic core , thereby using a total of 72 cores on 
a single chip . Cocolumnar synaptic interactions took place 
within a core , whereas the global projections of MC somatic 
spikes were routed via the intercore routing mesh . The 
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configured network utilized 12.5 % of the available neural 
resources per core and 6 % of the available synaptic memory . 
[ 0304 ] Completing one inference cycle ( sniff ; 5 gamma 
cycles ; 200 timesteps ) of the 72 - core network required 2.75 
ms and consumed 0.43 m ) , of which 0.12 m ) is dynamic 
energy . It should be noted that the time required to solution 
was not significantly affected by the scale of the problem 
( FIG . 10 ( 7 ) , owing to the Loihi architecture's fine - grained 
parallelism . This scalability highlights a key advantage of 
neuromorphic hardware for application to computational 
neuroscience and machine olfaction . Energy consumption 
also scaled only modestly as network size increased ( FIG . 
10 ( g ) ) , owing to the colocalization of memory and compute 
and the use of sparse ( spiking ) communication , which 
minimize the movement of data . Using multichip Loihi 
systems , illustrative embodiments are readily scalable to 
hundreds of columns and hundreds of thousands of interneu 
rons , and can integrate circuit models of the glomerular layer 
and the piriform cortex with the current EPL network of the 
??? . 

[ 0305 ] Further illustrative embodiments will now be 
described with reference to FIG . 11 . 
[ 0306 ] These embodiments , like others disclosed herein , 
provide SNN algorithms for signal restoration and identifi 
cation based on principles extracted from the mammalian 
olfactory system and broadly applicable to input from arbi 
trary sensor arrays . For interpretability and development 
purposes , we here examine the properties of its initial 
feedforward projection . Like the full algorithm , this feed 
forward component is fully spike timing - based , and utilizes 
online learning based on local synaptic rules such as STDP 
rules . Using an intermediate metric to assess the properties 
of this initial projection , the feedforward network exhibits 
high classification performance after few - shot learning with 
out catastrophic forgetting , and includes a “ none of the 
above ” outcome to reflect classifier confidence . We demon 
strate online learning performance using a publicly available 
machine olfaction dataset with challenges including rela 
tively small training sets , variable stimulus concentrations , 
and three years of sensor drift . 
[ 0307 ] The SNN - based online learning algorithms in these 
embodiments , based on principles and motifs derived from 
the mammalian olfactory system , can accurately classify 
noisy high - dimensional signals into categories that have 
been dynamically defined by few - shot learning . In order to 
better interpret the basis for the algorithm's capabilities , we 
focus in this description on the properties of the first 
feedforward projection , omitting the spike timing - based 
feedback loop that forms the core network of the full MOB 
model . Glomerular - layer processing is represented here by 
two preprocessing algorithms , whereas plasticity for rapid 
learning is embedded in subsequent processing by the EPL 
network . Information in the EPL network is mediated by 
patterns of spike timing with respect to a common clock 
corresponding to the biological gamma rhythm , and learning 
is based on localized spike timing - based synaptic plasticity 
rules . The algorithm is illustratively implemented in 
PyTorch for GPU computation , but is also suitable for 
implementation on state - of - the - art neuromorphic computing 
hardware such as the Intel Loihi platform . We here demon 
strate the interim performance of the feedforward algorithm 
using a well - established machine olfaction dataset with 
distinct challenges including multiple odorant classes , vari 

able stimulus concentrations , physically degraded sensors , 
and substantial sensor drift over time . 
[ 0308 ] The network is based on the architecture of the 
mammalian MOB . Primary olfactory sensory neurons 
( OSNs ) express a single odorant receptor type from a family 
of hundreds ( depending on animal species ) . The axons of 
OSNs that express the same receptor type converge to a 
common location on the surface of the MOB , forming a 
mass of neuropil called a glomerulus . Each glomerulus thus 
is associated with exactly one receptor type , and serves as 
the basis for an MOB column . The profile of glomerular 
activation levels across the hundreds of receptor types ( ~ 400 
in humans , ~ 1200 in rats and mice ) that are activated by a 
given odorant constitutes a high - dimensional vector of sen 
sory input . Within this first ( glomerular ) layer of the MOB , 
a number of preprocessing computations also are performed , 
including a high - dimensional form of contrast enhancement 
and an intricate set of computations mediating a type of 
global feedback normalization that enables concentration 
tolerance . The cellular and synaptic properties of this layer 
also begin the process of transforming stationary input 
vectors into spike timing - based representations discretized 
by 30-80 Hz gamma oscillations . The EPL , which consti 
tutes the deeper computational layer of the MOB , comprises 
a matrix of reciprocal interactions between principal neurons 
activated by sensory input ( e.g. , MCs ) and inhibitory 
interneurons ( e.g. , GCs ) . Computations in this layer depend 
on fine - timescale spike timing and odor learning , and 
modify the information exported from the MOB to its 
follower cortices . 

[ 0309 ] Chemical sensing in machine olfaction is similarly 
based upon combinatorial coding ; specificity is achieved by 
combining the responses of many poorly - selective sensors . 
In the present algorithm , networks were defined with a 
number of columns such that each column received input 
from one type of sensor in the connected input array . 
Columns each comprised one ET cell and one PG cell to 
mediate glomerular - layer preprocessing , and one MC and a 
variable number of GCs to mediate EPL odorant learning 
and classification , as illustrated in FIG . 11. Sensory input 
was preprocessed by the ET and PG cells of the glomerular 
layer ( for concentration tolerance ) , and then delivered as 
excitation to the array of MCs , which generated action 
potentials . Each MC synaptically excited a number of ran 
domly determined GCs drawn from across the entire net 
work , whereas activated GCs synaptically inhibited the MC 
in their home column . It should be noted that , in the present 
embodiments , these inhibitory feedback weights were illus 
tratively all reduced to zero to disable the feedback loop and 
EPL attractor dynamics , enabling evaluation of the initial 
feedforward transformation based on excitatory synaptic 
plasticity alone . During learning , the excitatory synapses 
followed a spike timing - dependent plasticity rule that sys 
tematically altered their weights , thereby modifying the 
complex receptive fields of recipient GCs in the service of 
odor learning . In the present embodiments , in lieu of the 
modified spike timing of the MC ensemble that characterizes 
the output of the full model , the binary vector describing GC 
ensemble activity in response to odor stimulation ( 0 : non 
spiking GC ; 1 : spiking GC ) served as the processed data for 
classification . Because we here describe the capacities of the 
initial feedforward projection of preprocessed data onto the 
GC interneuron array within the EPL- an initial transfor 
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mation that sets the stage for ongoing dynamics not dis 
cussed herein — we refer to such an embodiment as the EPLff 
network algorithm . 
[ 0310 ] FIG . 11 shows a detailed view of a portion 1100 of 
the above - described SNN implementing a neuromorphic 
algorithm in accordance with illustrative embodiments . The 
portion 1100 more particularly comprises EPLff network 
circuitry . Three columns are depicted in this view , for clarity 
and simplicity of illustration , but it is to be appreciated that 
other columns of the SNN are configured in a similar 
manner . Scaled sensor output is presented as sensor - scaled 
input data 1104 in parallel to excitatory ET cells 1105A and 
inhibitory PG cells 1105B in a glomerular layer of a pre 
processor of the SNN . This glomerular - layer circuit per 
forms an unsupervised concentration tolerance preprocessor 
step based on the graded inhibition of ET cells 1105A by PG 
cells 1105B . The concentration - normalized ET cell activity 
then is presented as input to their co - columnar MCs 1110. In 
the EPL , comprising MC interactions with inhibitory GCS 
1112 , levels of sensory input are encoded in MCs 1110 as a 
spike time precedence code across the MC population . MCs 
project randomly onto GCs 1112 with a connection prob 
ability of 0.4 . These synaptic connections are plastic , fol 
lowing an STDP rule that enables GCs 1112 to learn 
high - order receptive fields . The GC population consequently 
learns to recognize specific odorants by measuring the 
similarity of high dimensional GC activity vectors with the 
Hamming distance metric . The SNN in the present embodi 
ments generates a concentration prediction 1115 for particu 
lar input data using a readout from the GCs 1112 as 
illustrated . 
[ 0311 ] Data preprocessing techniques in these illustrative 
embodiments will now be described in more detail . 
[ 0312 ] Sensor scaling . We defined a set of preprocessing 
algorithms , any or all of which could be applied to a given 
data set to prepare it for efficient analysis by the core 
algorithm . The first of these , sensor scaling , is applied to 
compensate for heterogeneity in the scales of different 

-for example , an array comprising a combination of 
1.8V and 5V sensors . One simple solution is to scale the 
responses of each sensor by the maximum response of that 
sensor . Let X1 , X2 , X3 , xn be the responses of n sensors 
to a given odor and S1 , S2 , S3 , Sn be the maximum 
response values of those sensors . Then , 

those based on changes in odor quality . Distinguishing 
concentration differences from genuine quality differences 
appears to rely upon multiple coordinated mechanisms 
within MOB circuitry , but the most important of these is a 
global inhibitory feedback mechanism instantiated in the 
deep glomerular layer . The consequence of this circuit is that 
MC spike rates are not strongly or uniformly affected by 
concentration changes , and the overall activation of the 
MOB network remains relatively stable . We implemented 
this concentration tolerance mechanism as the graded inhi 
bition of ET cells by PG cell interneurons in the MOB 
glomerular layer , as shown in FIG . 11 a mechanism based 
upon recent experimental findings in which ET cells serve as 
the primary gates of MC activation and tested its impor 
tance empirically on machine olfaction data sets . This con 
centration tolerance mechanism facilitates recognition of 
odor stimuli even when they are encountered at concentra 
tions on which the network has not been trained ; moreover , 
once an odor has been identified , its concentration can be 
estimated based on the level of feedback that the network 
delivers in response to its presentation . This preprocessing 
step requires no information about input data labels , and 
greatly facilitates few - shot learning . 
[ 0314 ] Input from each sensor was delivered directly to 
ET and PG interneurons associated with the column corre 
sponding to that sensor , and the resulting PG cell activity 
was delivered via graded synaptic inhibition onto all ET 
cells within all columns in the network . ET cells in turn then 
synaptically excited their corresponding , cocolumnar MCs , 
as illustrated in FIG . 11. The approximate outcome of this 
preprocessor algorithm is as follows : given that x ; X2 
X3 denote the responses of ET cells to odor 
inputs ( prior to their inhibition by PG cells ) , and xips , x2 
x3 ! 8 , pg denote the analogous responses of PG 
interneurons to these same inputs , the resulting input to MC 
somata from ET cells following their PG - mediated lateral 
inhibition will be 

ET ET 
2 

ET ET 

pg 

9 

sensors 
ET ET ET ( 3 ) x?T x 
xpe ' xpe ' xpg ' xPg 

2 

X1 X2 X3 xn ? les Si S2 S3 Sn 

[ 0315 ] A version of this algorithm has been implemented 
using spiking networks on IBM TrueNorth neuromorphic 
hardware . 
[ 0316 ] The core algorithm in these embodiments will now 
be described in more detail . 
[ 0317 ] Cellular and synaptic models . We modeled the 
MCs and GCs as leaky integrate - and - fire neurons with an 
update period of 0.01 ms . The evolution of the membrane 
potential v of MCs and GCs over time was described as 

( 4 ) dv 
T = = -V + IR dt 

represent the sensor - scaled responses . The maximum sensor 
response vector S could be predetermined ( as in sensor 
voltages ) , or estimated using a model validation set . Here , 
we defined S using the model validation set ( 10 % of Batch 
1 data ) and utilized the same value of S for scaling all 
subsequent learning and inference data . This preprocessing 
algorithm becomes particularly useful when analyzing data 
from arbitrary or uncharacterized sensors , or from arrays of 
sensors that have degraded and drifted nonuniformly over 
time . 
[ 0313 ] Unsupervised concentration tolerance . Concentra 
tion tolerance is an important feature of mammalian as well 
as insect olfaction . Changes in odorant concentration evoke 
nonlinear effects in receptor activation patterns that are 
substantial in magnitude and often indistinguishable from 

? ? [ 0318 ] where t = rmem was the membrane time constant and 
rm and om denote the membrane resistance and capacitance 
respectively . For MCs , the input current I corresponded to 
sensory input received from ET cells ( after preprocessing by 
the ET and PG neurons of the glomerular layer as illustrated 
in FIG . 11 ) , whereas for GCs , 1 constituted the total synaptic 
input from convergent presynaptic MCs . In GCs , the param 
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Ishunt 
eter R was set to equal rm , whereas in MCs it was set to 
rm / rshunt where was the oscillatory shunting inhibition 
of the gamma clock ( described below ) . When v Vth , where 

denotes the spike threshold , a spike event was generated 
and v was reset to 0. The total excitatory current to GCs was 
modeled as 

V th 

1 = gw ( En - v ) ( 5 ) 

[ 0319 ] where En was the Nernst potential of the excitatory 
current ( +70 mv ) , v was the GC membrane potential , and 

n 

TiT2 - ( t - t ; ) 
e 1 

- ( 1-11 ) 
- e T2 & w = Wi & max 

was determined using a synthetic data set , and was set to 
cp = 0.4 in the present simulations . For present purposes , as 
noted above , GC - MC inhibitory weights were set to zero to 
disable attractor dynamics . 
[ 0324 ] STDP rule . We used a modified STDP to regulate 
MC - GC excitatory synaptic weight modification . Briefly , 
synaptic weight changes were initiated by GC spikes and 
depended exponentially upon the spike timing difference 
between the postsynaptic GC spike and the presynaptic MC 
spike . When a presynaptic MC spike preceded its postsyn 
aptic GC spike within the same gamma cycle , w for that 
synapse was increased ; in contrast , when MC spikes fol 
lowed GC spikes , or when a GC spike occurred without a 
presynaptic MC spike , w was decremented . Synaptic 
weights were limited by a maximum weight w The 
pairing of STDP with MC spike precedence coding dis 
cretized by the gamma clock generated a “ k winners take 
all ” learning rule , in which the value of k depended sub 
stantially on the GC spike threshold Vth and the maximum 
excitatory synaptic weight w , Under this rule , activated 
GCs were transformed from nonspecialized cells receiving 
weak inputs from a broad and random distribution of MCs 
into specialized , fully differentiated neurons that responded 
only to coordinated activation across a specific ensemble of 
k MCs . Under all training conditions , for present purposes , 
we set a high learning rate such that , after one cycle of 
learning , each of the synapses could have one of only three 

T1 – T2 
1-1 

??? " 

??? * 

a 

values : Wo , W max or 0 . 

describes the open probability of the AMPA - like synaptic 
conductances . Here , denotes presynaptic spike timing , wi 
denotes the synaptic weight , and gmax is a scaling factor . 
[ 0320 ] The parameters Cm , Fm , Ishunt . En , gmax? T? , and T2 
were determined only once each for MCs and GCs using a 
synthetic data set and remained unchanged during the appli 
cation of the algorithm to real datasets . The value of w ; at 
each synapse also was set to a fixed starting value based on 
synthetic data , but was dynamically updated according to 
the STDP learning rule . The spiking thresholds Vth of MCs 
and GCs were determined by assessing algorithm perfor 
mance on the training and validation sets . Because we 
observed that using heterogeneous values of Vth across GCS 
improved performance , the values of Vth were randomly 
assigned across GCs from a uniform distribution . 
[ 0321 ] Gamma clock and spike precedence code . Oscilla 
tions in the local field potential are observed throughout the 
brain , arising from the synchronization of activity in neu 
ronal ensembles . In the MOB , gamma - band ( 30-80 Hz ) 
oscillations are associated with the coordinated periodic 
inhibition of MCs by GCs that constrains MC spike timing , 
thereby serving as a common clock . For this work , we 
modeled a single cycle gamma oscillation as a sinusoidal 
shunting inhibition delivered onto all MCs , Ishunt 

( 6 ) 27 * f * t shunt = -3.8 * cos 1000 ) +5 

[ 0325 ] The STDP parameters were similar to those 
described for a synthetic data set in Ayon Borthakur and 
Thomas A. Cleland , “ A neuromorphic transfer learning 
algorithm for orthogonalizing highly overlapping sensor 
array responses , ” in 2017 ISOCS / IEEE International Sym 
posium on Olfaction and Electronic Nose ( ISOEN ) , pp . 1-3 , 
2017. Among these , only the maximum synaptic weight 
Wmax was tuned based on validation set performance . For 
this feedforward implementation , online learning without 
the requirement of storing training data yielded its best 
validation set performance when w , max Wo , such that learn 
ing was limited to long - term synaptic depression . 
[ 0326 ] Classification . For the classification of test odor 
ants in this reduced feedforward EPLff implementation , we 
calculated the Hamming distance between the binary vectors 
of GC odorant representations . Specifically , for every input , 
GCs generated a binary vector based upon whether the GC 
spiked ( 1 ) or did not spike ( 0 ) . We matched the similarity of 
test set binary vectors with the training set vector ( s ) using 
the Hamming distance and classified the test sample based 
upon the label of the closest training sample . Alternatively , 
an overlap metric between GC activation patterns also was 
calculated ; results based on this method were reliably iden 
tical to those of the Hamming distance . Classification was 
set to “ none of the above " if the Hamming distance of the 
GC binary vectors was greater than 0.5 , or if the overlap 
metric was less than 0.5 . 
[ 0327 ] We tested our algorithm on the publicly available 
UCSD gas sensor drift dataset , slightly reorganized to better 
demonstrate online learning . The original dataset contains 
13910 measurements from an array of 16 polymer che 
mosensors exposed to 6 gas - phase odorants spanning a wide 
range of concentrations ( 10-1000 ppmv ) and distributed 
across ten batches that were sampled over a period of three 
years to emphasize the challenge of sensor drift over time . 
Owing to drift , the sensors ' output statistics change drasti 

[ 0322 ] where f is the oscillation frequency ( 40 Hz ) and t 
is the simulation time . We used a spike precedence coding 
scheme for MCs where earlier MC spike phases correspond 
to stronger sensor input and are correspondingly more 
effective at growing and maintaining spike timing - depen 
dent plastic synapses . In the full model , the gamma clock 
serves as the iterative basis for the attractor ; for present 
purposes in the EPLff context it served only to structure the 
spike times of active MCs converging onto particular GCs 
( precedence coding ) , and thereby to govern the changes in 
excitatory synaptic weights according to the STDP rule . 
[ 0323 ] Connection topology . MC lateral dendrites support 
action potential propagation to GCs across the entire extent 
of the MOB , whereas inhibition of MCs by GCs is more 
localized . Excitatory MC - GC synapses were initialized with 
a uniformly distributed random probability cp of connection 
and a uniform weight wo ; synaptic weights were modified 
thereafter by learning . The initial connection probability cp 
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cally over the course of the ten batches ; between this 
property , the six different gas types , and the wide range of 
concentrations delivered , this dataset is well suited to test the 
capabilities of the present algorithm without exceeding the 
learning capacity of its feedforward architecture as illus 
trated in FIG . 11. For the online learning scenario , we sorted 
each batch of data according to the odorant trained , but did 
not organize the data according to concentration . Hence , 
each training set comprised 1 to 10 odorant stimuli of the 
same type but at randomly selected concentrations . Test sets 
always included all six different odorants , again at randomly 
selected concentrations . For sensor scaling and the fine 
tuning of the algorithm , we used 10 % of the Batch 1 data as 
a validation set . The six odorants in the dataset are , in the 
order of training used herein : ammonia , acetaldehyde , 
acetone , ethylene , ethanol , and toluene . Batches 3-5 
included only 5 different odorant stimuli , omitting toluene . 
[ 0328 ] Eight features per chemosensor were recorded in 
the UCSD dataset , yielding a 128 - dimensional feature vec 
tor . However , we chose to use only one feature per sensor in 
our analysis ( the steady state response level ) , for a total of 
16 features . We imposed this restriction to challenge our 
algorithm , and because generating features from raw data 
requires additional processing , energy and time , all of which 
can impair the effectiveness of field - deployable hardware . It 
should be noted , however , the sensor scaling and concen 
tration tolerance preprocessors described above would 
enable the EPLff network to utilize the full 128 - dimensional 
dataset without specific adaptations other than expanding the 
number of columns accordingly . 
[ 0329 ] Results of the above - noted testing of the present 
embodiments will now be described . 
[ 0330 ] Data preprocessing . All sensory input data were 
preprocessed before being presented to the network . First , 
sensor scaling was applied to weight the sixteen sensors 
equally in subsequent computations . The mean 
responses of the sixteen sensors differed widely , with some 
sensors exhibiting an order of magnitude greater variance 
than others across the ten odorants tested . Sensor scaling 
mitigated this effect by scaling each sensor's gain such that 
the dynamic ranges of all sensors across the test battery were 
effectively equal . This process enabled each sensor to con 
tribute a comparable amount of information to subsequent 
computations ( up to a limit imposed by each sensor's signal 
to noise ratio ) , and improved network performance by 
maintaining consistent mean activity levels across test odor 
ants . 

[ 0331 ] Since each odorant was presented at a wide range 
of randomly selected concentrations , the response of the 
sensor array to a given odorant varied widely across pre 
sentations . Application of the unsupervised concentration 
tolerance preprocessor sharply and selectively reduced the 
concentration - specific variance among responses to pre 
sented odorants . These preprocessed odorant signatures then 
were presented to the plastic EPLff network for training or 
classification . Notably , this preprocessor step greatly facili 
tated cross - concentration odorant recognition , even enabling 
the accurate classification of samples presented at concen 
trations that were not included in the training set . This was 
particularly important for one- and few - shot learning , in 
which the network was trained on just one or a few exem 
plars ( respectively ) , at unknown concentration ( s ) , such that 
most of the odorants in the test set were presented at 
concentrations on which the network had never been trained . 

[ 0332 ] The sensor scaling preprocessor ( retaining the scal 
ing factors determined from the 10 % validation set of Batch 
1 ) , combined with the normalization effects of the subse 
quent concentration tolerance preprocessor , had the addi 
tional benefit of restoring the dynamic range of degraded 
sensors in order to better match classifier network param 
eters . Because of this , the network did not need to be 
reparameterized to effectively analyze the responses of the 
degraded sensors in the later batches of this dataset . Com 
pared to the raw sensor output of Batch 1 ( collected from 
new sensors ) , the raw sensor output of Batch 7 ( collected 
after 21 months of sensor deterioration ) was reduced to 
roughly a third of its original range . Sensor scaling mitigated 
this effect by magnifying sensor responses into the dynamic 
range expected by the network . Subsequent preprocessing 
for concentration tolerance effectively reduced concentra 
tion - specific variance , revealing a set of odorant profiles 
that , while qualitatively dissimilar to their profiles based on 
the same sensors 21 months prior , appear only modestly 
degraded in terms of their distinctiveness from one another . 
[ 0333 ] For many machine olfaction applications , it is 
useful to estimate the concentrations of gases in the vicinity 
of the sensors . We sought to use the information extracted 
from the concentration tolerance preprocessor to estimate 
the concentrations of test samples after classification . The 
concentration estimation curve was a function of both odor 
ant identity and the total sensor response profile . Using the 
sum of the 16 sensor responses ( S ) , we fitted an odorant 
specific quadratic curve for an implicit model of response 
profiles across concentrations C : C = ax ? + b , where the 
parameters a and b were determined from the training set . 
The mean absolute error ( MAE ) of the prediction ( in ppmv ) 
was estimated as 

a 

( 7 ) raw Cpred – Cactuall 
n 

n 

[ 0334 ] where n denotes the total number of samples . For 
the five - shot training of Batch 1 ( i.e. , five random samples 
drawn from Batch 1 for each odorant ) , the MAE was 35.14 
units . This error was reduced to 23.35 for ten - shot learning . 
Similarly , the MAE for Batch 7 decreased from 76.60 
( five - shot ) to 58.18 ( ten - shot ) . The parallel network archi 
tecture in this embodiment advantageously provides an 
estimate of concentration along with concentration toler 

a 

ance . 

a 

[ 0335 ) Online learning . Unlike biological odor learning , 
artificial neural networks optimized for a certain task tend to 
suffer from catastrophic forgetting , and the pursuit of online 
learning capabilities in deep networks is a subject of active 
study . In contrast , the EPLff learning network described 
herein naturally resists catastrophic forgetting , exhibiting 
powerful online learning using a fast spike timing - based 
coding metric . Moreover , we include a " none of the above ” 
outcome which permits classification only above a threshold 
level of confidence . Hence , after being trained on one 
odorant , the network could identify a test sample as either 
that odorant or “ none of the above . ” After subsequently 
training the network on a second odorant , it could classify a 
test sample as either the first trained odorant , the second 
trained odorant , or “ none of the above . " This online learning 
capacity enables ad hoc training of the network , with inter 
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mittent testing if desired , with no need to train on or even 
establish the full list of classifiable odorants in advance . It 
also facilitates training under missing data conditions ( e.g. , 
batches 3-5 contain samples from only five odorants , unlike 
the other batches which include six odorants ) , and could be 
utilized to trigger new learning in an unsupervised explo 
ration context . Finally , once learned , the training set data 
need not be stored . 

[ 0336 ] To analyze the 16 - sensor UCSD dataset , we con 
structed a 16 - column spiking network with 4800 GC 
interneurons and a uniformly random MC - GC connection 
probability cp = 0.4 . This number of GCs was selected 
because it was the smallest network that achieved asymp 
totic performance on the validation dataset ( Batch 1 , one 
shot learning ) . We then trained this network on ammonia 
using ten different few - shot training schemes : one - shot , 
two - shot , three - shot , up through ten - shot in order to measure 
the utility of additional training . Test data ( across all trained 
odorants and all concentrations in the dataset ) were classi 
fied with 100.0 % accuracy in all cases . We subsequently 
trained each of these trained networks on acetaldehyde , 
using the same number of training trials in each case . After 
one - shot learning of acetaldehyde , the network classified all 
trained odorants with 99.61 + 0.28 % accuracy ( average of 
three runs ) . After subsequent one - shot learning of acetone , 
classification performance was 95.65 + 0.19 % ; after ethylene , 
96.06 + 0.17 % ; after ethanol , 90.94 + 0.0 % , and finally , after 
one - shot training on the sixth and final odorant , toluene , test 
set classification performance across all odorants was 
90.27 + 0.12 % . Multiple - shot learning generally produced 
correspondingly higher classification performance as the 
training regimen expanded . Classification using an overlap 
metric rather than the Hamming distance yielded almost 
identical results . It should be noted that classification per 
formance did not catastrophically decline as additional odor 
ants were learned in series , particularly when higher - quality 
sensors were used or when larger multiple - shot training sets 
were employed . These results illustrate that the EPLff net 
work , even in the absence of the full model's recurrent 
component , exhibits true online learning . 
[ 0337 ] The availability of data in the UCSD dataset from 
over three years of sensor deterioration enabled the testing 
of this online learning algorithm with both fresh and 
degraded sensor arrays . Classification results from the same 
procedures described above but using progressively older 
and more degraded sensors indicated that classification 
performance declined overall as the sensors deteriorated in 
later batches , but could be substantially rescued by expand 
ing the training regimen from one - shot to few - shot learning . 
Overall , multiple - shot training reliably improved classifica 
tion performance , though the residual variance across dif 
ferent training regimes suggests that the random selection of 
better or poorer class exemplars for training ( particularly 
noting the uncontrolled variable of concentration ) exerted a 
measurable effect on performance . 
[ 0338 ] Batch 10 of the UCSD dataset poses a relatively 
challenging classification problem . To produce it , the sen 
sors were intentionally degraded and contaminated by turn 
ing off sensor heating for five months following the produc 
tion of Batch 9 data . Prior work with this dataset has 
achieved up to 73.28 % classification performance on Batch 
10 , without online learning and using a highly introspective 
approach tailored for this specific dataset . In contrast , ten 

shot learning on Batch 10 using the present EPLff algorithm 
achieved 85.43 % classification accuracy . 
[ 0339 ] To compare the EPLff network's resistance to 
catastrophic forgetting against an existing standard method , 
we built a 16 - input multi - layer perceptron ( MLP ) compris 
ing 16 input units for raw sensor input ( ReLu activation ) , 
4800 hidden units ( ReLu activation ) , and 6 output units for 
odorant classification . The MLP was trained using the Adam 
optimizer with a constant learning rate of 0.001 . Since there 
was no straightforward way of implementing “ none of the 
above ” in an MLP , the MLP was only trained using two or 
more odorants . After initial , interspersed training on two 
odorants from Batch 1 , the MLP classified test odorants at 
high accuracy ( 99.41 + 0.0 % ; average of three runs ) . How 
ever , its classification accuracy dropped sharply after the 
subsequent , sequential learning of odorant 3 ( 30.6120.0 % 
accuracy ) , odorant 4 ( 16.24 : 9.29 % ) , odorant 5 ( 18.13 : 0 . 
0 % ) , and odorant 6 ( 15.99 + 0.0 % ) . Catastrophic forgetting is 
a well - known limitation of MLPs , and is presented here 
simply to quantify the contrast in online learning perfor 
mance between the EPLff implementation and a standard 
network of similar scale . 
[ 0340 ] Online reset learning for mitigating sensor drift . 
One of the most challenging problems of machine olfaction 
is sensor drift , in which the sensitivity and selectivity 
profiles of chemosensors gradually change over weeks to 
months of use or disuse . Efforts to compensate for this drift 
have taken many forms , from simply replacing sensors to 
designing highly introspective or specific corrective algo 
rithms . For example , one approach requires the nonrandom , 
algorithmically guided selection of relevant samples across 
batches and / or the utilization of test data as unlabeled data 
for additional training . Despite some partial successes in 
these approaches , the real - world challenge of sensor drift is 
a fundamentally ill - posed problem , in which the rapidity and 
nature of functional drift is highly dependent on the idio 
syncratic chemistry of individual sensors and specific sen 
sor - analyte pairs . 
[ 0341 ] A practical solution to this challenge is to retrain 
the network as needed to maintain performance , leveraging 
its rapid , online learning capacity . Specifically , MC - GC 
synaptic weights are simply reset to their untrained values 
and the network then is rapidly retrained using the new 
( degraded ) sensor response profiles ( reset learning ) . Retrain 
ing is not a new approach , of course , but overtly choosing a 
commitment to heuristic retraining as the primary method 
for countering sensor drift is important , as it determines 
additional criteria for real - world device functionality that 
candidate solutions should address , such as the need for 
rapid , ideally online retraining in the field and potentially a 
tolerance for lower - fidelity training sets . Specifically , 
retraining a traditional classification network may require : 
[ 0342 ] 1. Prior knowledge of the number of possible odor 
classes to be identified , 
[ 0343 ] 2. A sufficiently large and representative training 
set incorporating each of these classes , 
[ 0344 ] 3. The retuning of network hyperparameters to 
match the altered characteristics of the degraded sensors , 
requiring an indeterminate number of training iterations . 
[ 0345 ] The EPL network is not constrained by the above 
requirements . As demonstrated above , it can be rapidly 
retrained using small samples of whatever training sets are 
available and then be updated thereafter — including the 
subsequent introduction of new classes . The storage of 
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training data for retraining purposes is unnecessary as the 
network does not suffer from catastrophic forgetting . 
Finally , the present network does not require hyperparam 
eter retuning . Here , only the MC - GC weights were updated 
during retraining ( using the same STDP rule ) ; sensor scaling 
factors and all other parameters were ascertained once , using 
the 10 % validation set of Batch 1 , and held constant there 
after . Moreover , the “ none of the above " classifier confi 
dence feature facilitates awareness of when the network may 
require retraining ; an increase in “ none of the above ” 
classifications provides an initial cue that then can be 
evaluated using known samples . 
[ 0346 ] To assess the efficacy of this approach , we tested 
the EPLff algorithm on the UCSD dataset framed as a sensor 
drift problem . The procedure for this approach , and conse 
quently the results , are similar to those described above . It 
should be noted that the sensor scaling factors and network 
parameters were tuned only once , using the validation set 
from Batch 1 , on the theory that the concept of rapid reset 
was incompatible with a strategy of re - optimizing multiple 
network hyperparameters . Hence , no parameter changes 
were permitted , other than the MC - GC excitatory synaptic 
weights that were updated normally during training accord 
ing to the STDP rule . As described above , Batch 1 training 
samples from all six odorants again were presented to the 
network in an online learning configuration , and classifica 
tion performance then was assessed by Batch 1 test data . 
MC - GC synaptic weights then were reset to the default 
values ( the reset ) , after which Batch 2 training samples were 
presented to the network in the same manner , followed by 
testing with Batch 2 test data including all odorants and 
concentrations . We repeated this process for batches 3-10 . 
We also assessed post - reset classification performance 
across all batches based on a maximally rapid reset ( i.e. , 
one - shot learning ) and compared this to performance after 
expanded training protocols up through ten - shot learning . In 
general , while modest increases in classification accuracy 
were observed when the training set size was larger , these 
results demonstrate scalability , showing that the EPLff algo 
rithm classifies large sets of test data with reasonable accu 
racy even based on small training sets and lacking control 
over the concentrations of presented odorants . 
[ 0347 ] These illustrative embodiments provide neural net 
work algorithms that achieve superior classification perfor 
mance in an online learning setting while not being specifi 
cally tuned to the statistics of any particular dataset . This 
property , coupled with its few - shot learning capacity and 
SNN architecture , renders it particularly appropriate for 
field - deployable devices based on learning - capable SNN 
hardware , recognizing that the interim use of the Hamming 
distance for nearest - neighbor classification in the present 
EPLff framework can be replaced with other metrics . This 
algorithm is inspired by the architecture of the mammalian 
MOB , but is comparably applicable to any high - dimensional 
dataset that lacks internal low - dimensional structure . 
[ 0348 ] The present EPLff incarnation of the network uti 
lizes one or more preprocessor algorithms to prepare data for 
effective learning and classification by the core network . 
Among these is an unsupervised concentration tolerance 
algorithm derived from feedback normalization models of 
the biological system , a version of which has been previ 
ously instantiated in SNN hardware . Inclusion of this pre 
processor enables the algorithm in illustrative embodiments 
to quickly learn reliable representations based on few - shot 

learning from odorant samples presented at different and 
unknown concentrations . Moreover , the network then can 
generalize across concentrations , correctly classifying 
unknown test odorants presented at concentrations on which 
the network was never trained , and even estimating the 
concentrations of these unknowns . 

[ 0349 ] The subsequent , plastic EPL layer of the network is 
based on a high - dimensional projection of sensory input data 
onto a network of interneurons known as GCs . In the present 
feed - forward implementation , our emphasis is on the roles 
and capacities of two sequential preprocessor steps followed 
by the STDP - driven plasticity of the excitatory MC - GC 
synapses . Other embodiments can include the feedback 
architecture of the original model while enabling a more 
sophisticated development of learned classes within the 
high - dimensional projection field . Even in its present feed 
forward form , however , the EPLff algorithm exhibits ( 1 ) 
rapid , online learning of arbitrary sensory representations 
presented in arbitrary sequences , ( 2 ) generalization across 
concentrations , ( 3 ) robustness to substantial changes in the 
diversity and responsivity of sensor array input without 
requiring network reparameterization , and , by virtue of these 
properties , is capable of ( 4 ) effective adaptation to ongoing 
sensor drift via a rapid reset - and - retraining process termed 
reset learning . This capacity for fast reset learning represents 
a practical strategy for field - deployable devices , in which a 
training sample kit could be quickly employed in the field to 
retune and restore functionality to a device in which the 
sensors may have degraded . It should be noted that , for such 
purposes , the EPLff algorithm was not , and need not be , 
crafted to the statistics of any particular data set , nor was the 
network pre - exposed to testing set data . 
[ 0350 ] Because field - deployable devices require a level of 
generic readiness for undetermined or underdetermined 
problems , and these EPLff properties favor such readiness , 
we have emphasized the portability of these algorithms to 
neuromorphic hardware platforms that may come to drive 
such devices . Interestingly , many of the features of the 
biological olfactory system that have inspired this design are 
appropriate for such devices . Spike timing and event - based 
algorithms are attractive candidates for compact , energy 
efficient hardware implementation . Spike timing metrics can 
compute similar transformations as analogue and rate - based 
representations ; indeed , it has been proposed that spike 
based computations could in principle exhibit all of the 
computational power of a universal Turing machine . Spike 
timing - dependent plasticity is a localized learning algorithm 
that is highly compatible with the colocalization of memory 
and compute principle of neuromorphic design , and its 
theoretical capacities have been thoroughly explored in 
diverse relevant contexts . Our biologically constrained 
approach to algorithm design also provides a unified and 
empirically verified framework to investigate the interac 
tions of these various algorithms and information metrics , to 
better interpret and apply them to artificial network design . 
[ 0351 ] In illustrative embodiments , we provide artificial 
learning networks to replicate some of the most powerful 
capabilities of the biological olfactory system , in particular 
its capacity for rapid online learning and the fast and 
effective classification of learned odorants despite ongoing 
changes in sensor properties and the unpredictability of odor 
concentrations . Other embodiments can extend this frame 
work to incorporate the feedback dynamics of the biological 
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system , increase the dimensionality of sensor arrays , and 
provide more sophisticated biomimetic classifiers . 
[ 0352 ] Additional aspects of illustrative embodiments will 
now be described with reference to FIG . 12 . 
[ 0353 ] The mammalian olfactory system learns rapidly 
from very few examples , presented in unpredictable online 
sequences , and then recognizes these learned odors under 
conditions of substantial interference without exhibiting 
catastrophic forgetting . We have developed , in the illustra 
tive embodiments to be described below , a brain - mimetic 
algorithm that replicates these properties , provided that 
sensory inputs adhere to a common statistical structure . 
However , in natural , unregulated environments , this con 
straint cannot be assured . We here present a series of signal 
conditioning steps , inspired by the mammalian olfactory 
system , that transform diverse sensory inputs into a regu 
larized statistical structure to which the learning network can 
be tuned . This preprocessing enables a single instantiated 
network to be applied to widely diverse classification tasks 
and datasets — here including gas sensor data , remote sens 
ing from spectral characteristics , and multi - label hierarchi 
cal identification of wild species — without adjusting net 
work hyperparameters . 
[ 0354 ] The mammalian olfactory system learns and rec 
ognizes odors of interest under suboptimal circumstances 
and in unpredictable environments . Real - world odor stimuli 
vary in their concentrations and qualities , and are typically 
encountered in the presence of unpredictable configurations 
of competing background odors that can substantially 
occlude the profile of sensory receptor activation on which 
odor quality recognition nominally depends . Moreover , odor 
learning is rapid , and multiple odors can be learned in 
arbitrary sequences ( online learning ) without their learned 
representations interfering with one another ( causing cata 
strophic forgetting ) and without training data being some 
how stored to maintain or restore learning performance . 
Altogether , this suite of sensory sampling challenges con 
stitutes the problem that we refer to herein as “ learning in the 
wild . ” 
[ 0355 ] The present embodiments provide example SNN 
algorithms for learning and identifying chemosensor array 
responses and other intrinsically higher - dimensional signals , 
based on the architecture of the mammalian MOB . Briefly , 
primary chemosensory neurons expressing a single type of 
receptor converge to common locations on the MOB sur 
face , there forming clusters of neuropil called glomeruli . 
Activity in these glomerular networks then is sampled and 
processed by second - order principal neurons and multiple 
classes of interneurons . Glomerular activation profiles 
across hundreds of receptor types ( ~ 1200 in rodents ) con 
stitute high dimensional vectors describing odor qualities 
embedded in multiple sources of noise . 
[ 0356 ] It should be noted that glomerular - layer network 
interactions perform multiple signal conditioning tasks on 
raw chemosensory inputs . Recognizing odor stimuli across 
wide concentration ranges , for example , depends on the 
coordination of multiple computational elements , including 
a global inhibitory feedback loop within the MOB glom 
erular layer that limits concentration - dependent heterogene 
ity in the activity of MOB principal neurons . A version of 
this input normalization algorithm has been implemented on 
the IBM TrueNorth neuromorphic hardware platform . 
[ 0357 ] Other embodiments of example SNN algorithms 
for machine olfaction disclosed herein , illustratively imple 

mented on Intel Loihi , learn rapidly from one or few shots , 
resist catastrophic forgetting , and classify learned odors 
under high levels of impulse noise . Moreover , the interpret 
ability of these algorithms enables the causes of the classi 
fication to be ascertained post hoc , in principle enabling the 
identification of the specific combinations of input features 
that determine a sample's classification . More generalized 
versions of this model relax control over key parameters in 
order to develop an experience - dependent metric of simi 
larity for purposes of hierarchical classification . However , 
the plastic network at the core of this generalized algorithm 
is sensitive to the statistical parameters of sensory input , 
potentially requiring parameter retuning in order to maintain 
effective classification performance when the input statistics 
change . We instead implement a consistent set of adaptive 
signal conditioning mechanisms that illustratively enable 
any sensor array input profile to be accepted by a given 
instantiated network for learning and high - fidelity classifi 
cation under noise without requiring parameter retuning . 
This strategy enables multiple , statistically diverse input 
signals to each be encountered , learned , and classified by the 
same network — an important capacity for an artificial sen 
sory system deployed into an unknown “ wild ” environment . 
[ 0358 ] An example algorithm adaptation for “ learning in 
the wild ” will now be described in more detail with refer 
ence to FIG . 12 . 
[ 0359 ] FIG . 12 shows schematic overview of brain 
mimetic model . An implementation 1200 of a neuromorphic 
algorithm using an SNN in this embodiment comprises a 
core learning network 1201 driven by input received by a 
data sampling stage 1204 and preprocessed by a plurality of 
preprocessors 1205. The preprocessors 1205 include mul 
tiple signal conditioning functions attributed to glomerular 
layer circuitry in the biological system , including normal 
ization , contrast enhancement , and statistical regularization . 
The core learning network 1201 comprises an inhibitory 
feedback loop between principal neurons 1210 and interneu 
rons 1212 in which sensory information is conveyed by the 
phases of principal neuron spike times with respect to the 
underlying gamma cycle ; learned patterns form attractors 
that classify test samples , as described elsewhere herein . For 
purposes of the present embodiments , this inhibitory feed 
back was disabled and the patterns of interneuron activation 
were read out directly . Classification was estimated based on 
the minimum Hamming distance between test sample and 
learned ensembles in the interneuron representation . 
[ 0360 ] The feedback loop comprising the core learning 
network 1201 recruits populations of interneurons during 
learning to represent higher - order stimulus features , as 
described previously herein . To explicitly represent stimulus 
similarity ( a prerequisite for constructing hierarchical rep 
resentations on this metric ) , these recruited populations are 
permitted to overlap in their representation of similar input 
stimuli — a goal that requires relaxing control over interneu 
ron recruitment . However , this poses a challenge , in that 
differently structured sensory inputs can be poorly suited for 
the parameterized network . Sensors in the array that are 
mismatched to the environment or to one another , sensory 
input profiles that differ substantially in mean amplitudes 
( e.g. , higher or lower analyte concentrations ) , or even input 
profiles that are broader and flatter or steeper and narrower 
than expected all have the potential to disrupt learning and 
classification performance . In lieu of retuning network 
hyperparameters , we sought to construct a network archi 
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tecture that could learn and classify input patterns irrespec 
tive of their statistical properties . That is , “ learning in the 
wild ” in some embodiments configures a single parameter 
ized network to be able to learn and classify any set of 
relevant signal patterns that it may encounter . 
[ 0361 ] We here present two elements of network archi 
tecture , inspired by the biological olfactory system , that 
enable “ learning in the wild . ” First , we present a series of 
signal conditioning preprocessors , based on elements of 
MOB glomerular - layer circuitry , that effectively normalize 
and regularize sensory input patterns . Second , we show that 
the implementation of heterogeneity in key network param 
eters further broadens network tolerance and improves clas 
sification performance . To illustrate these effects more 
clearly , in describing the present embodiments we omit the 
inhibitory feedback loop that governs the attractor dynamics 
of the core learning network , and instead focus on an 
intermediate estimate of classification accuracy derived 
from the first projection of the preprocessed input stream 
onto the interneurons of the core network ( i.e. , the EPLff 
component described above and illustrated in FIG . 12 ) . We 
also describe the profiles of interneuron recruitment as an 
indicator of the statistical similarities among input signals 
after preprocessing , and by extension the adaptiveness of 
these representations for the fixed hyperparameters of the 
core learning network . 
[ 0362 ] Various features of preprocessors utilized in the 
present embodiments will now be described in more detail . 
[ 0363 ] We implemented three preprocessors that were 
applied in sequence to sampled input vectors . Among these , 
the second ( intensity normalization ) is directly inspired by 
glomerular - layer operations in the MOB , and the third 
( heterogeneous duplication ) makes use of known circuit 
motifs in the MOB to which no clear function has previously 
been attributed . 
[ 0364 ] Sensor scaling . Sensor scaling enables the inclu 
sion of heterogeneous sets of sensors or feature values that 
may be drawn from different scales of measurement . Based 
on a small sample of inputs ( validation set ) , this preproces 
sor estimates the range of values received from each sensor 
and scales each sensor value accordingly . Because samples 
cannot be guaranteed to include the full range of values that 
a sensor may deliver , this step does not comprise idealized 
scaling , but order - of - magnitude approximate scaling that 
prevents a subset of inputs from inappropriately dominating 
network plasticity . To enhance feature value differences , the 
scaled parameters then are multiplied by an equidimensional 
vector with values drawn from a uniform distribution 
between 0.5 and 1.0 ; once defined , these vector values are a 
constant attribute of an instantiated network . 
[ 0365 ] Unsupervised intensity normalization . For some 
input streams , stimulus intensity can interfere with identity . 
For example , increased concentrations of chemical analytes 
will nonuniformly increase the responses of array che 
mosensors , which impairs analyte recognition across con 
centrations . In the biological system , it has been proposed 
that multiple coordinated mechanisms serve to reduce the 
impact of intensity differences ( i.e. , yielding concentration 
tolerance , or concentration invariance ) , with the remaining 
uncompensated intensity effects being learned as part of the 
characteristic variance of that stimulus . We adopted this principle , implementing a nonspecific inhibitory feedback 
mechanism inspired by the deep glomerular layer of the 
olfactory system and comparable to one previously imple 

mented in neuromorphic hardware . This preprocessor 
enables the recognition of odorant signatures presented at a 
range of untrained concentrations , even under few - shot 
learning conditions . Intensity normalization in the biological 
system also is required for regulated high - dimensional con 
trast enhancement , although the latter algorithm was not 
incorporated into the present simulations . 
[ 0366 ] Heterogeneous duplication . Despite sensor scaling 
and intensity normalization , the different distributions of 
activity levels across the array of inputs still could disrupt 
the performance of the core attractor in the generalized 
network model , most prominently by recruiting widely 
divergent numbers of interneurons during learning . To 
address this problem without resorting to retraining network 
hyperparameters , we duplicated each input across a number 
of excitatory feedforward interneurons ( e.g. , five ) and then 
randomly projected the activity of these interneurons onto a 
similar number of principal neurons , as previously described 
herein in conjunction with FIG . 4. Because the number of 
processing columns of the core learning network is deter 
mined by the number of principal neurons , this also 
expanded the dimensionality of the network . The integration 
and synaptic properties of both cell types were heteroge 
neous across the duplicates , drawn randomly from a defined 
range during network instantiation . This feedforward het 
erogeneous duplication with random projections regularized 
the statistical distribution of input levels into a consistent 
range , enabling a single parameterization of the core net 
work to be effective across a wide range of poorly - behaved 
inputs . 
( 0367 ] Interestingly , the need for statistical regularization 
of afferent input activity has not yet been recognized as a 
problem in the biological olfactory system . It may be that the 
biological system is tolerant of statistically diverse inputs 
via other mechanisms that have yet to be elucidated , but it 
is nevertheless intriguing that this feedforward projection 
motif is the dominant mechanism of sensory sampling in the 
biological MOB . Specifically , convergent primary sensory 
neurons primarily excite ET cells within a glomerulus ( along 
with inhibitory PG cells ) , and these ET cells then in turn 
excite the principal neurons of that glomerulus . This indirect 
pathway has been shown to be the dominant path of afferent 
excitation , with direct OSN - to - principal neuron excitation 
being relegated to a considerably smaller role . 
[ 0368 ] Goodness of preprocessing metric , 
cessor sequence described above regularized widely diverse 
input signals into a common statistical distribution to which 
the core network was optimized . Well - regularized sensory 
inputs recruit consistent numbers of interneurons into the 
representation during learning , and activate appropriate 
interneuron ensembles during testing . To assess the func 
tional adequacy of preprocessing , we developed a goodness 
of preprocessing metric , Sp , as a measure of the consistency 
of interneuron recruitment efficacy across a heterogeneous 
range of samples : 

8p : The prepro 
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[ 0369 ] where v is an integer vector of interneuron spike 
counts and dim v denotes the number of samples under 
consideration . This equation has two factors . First , the 
no - spike penalty 

min ( min ( v ) , 1 ) ( 9 ) 

[ 0370 ] is zero if any of the stimuli presented fail to activate 
any interneurons at all ; otherwise its value is unity . Second , 
the interneuron activation similarity index 

Vi ( 10 ) 
max ( v ) 
dim v 

and w scale 

??? 

[ 0371 ] reflects the similarity of interneuron recruitment 
levels across all stimulus presentations ( i.e. , across multiple 
different stimuli , potentially also including a range of stimu 
lus intensities or concentrations ) . These two factors together 
generate a value of gp between 0 and 1. A gp value approach 
ing unity indicates that all test stimuli activate approxi 
mately the same nonzero number of interneurons ; lower 
values indicate that different stimuli recruit substantially 
different numbers of interneurons , or none at all , which may 
impair the performance of a given core network for some of 
these stimuli . 
[ 0372 ] The core learning network in these embodiments 
will now be further described . 
[ 0373 ] The core learning network comprises a recurrent 
excitatory - inhibitory feedback loop between populations of 
principal neurons ( e.g. , MCs ) and inhibitory interneurons 
( e.g. , GCs ) , as illustrated in FIG . 12. Rapid online learning 
progressively modifies the synaptic weights of this network , 
generating attractors that correctly classify even highly 
degraded , noisy inputs , as described elsewhere herein . It 
should be noted that this feedback loop recruits interneurons 
during learning ; to model similarity , a prerequisite for con 
structing hierarchical representations , these recruited popu 
lations are permitted to overlap in their representation of 
similar input stimuli . This renders the network more sensi 
tive to the statistics of sensory input , thereby requiring signal 
conditioning if parameter retuning is to be avoided . As noted 
above and as illustrated in FIG . 12 , to focus on the statistical 
regularization of sensory inputs to this learning network , we 
include only the feedforward portion of the core network in 
the present simulations , reading out regularization and inter 
mediate classification results ( i.e. , the goodness of prepro 
cessing index 8p and thresholded Hamming distances ) 
directly from the interneuron population . As in the full 
model described previously , sensor activation levels are 
represented in principal neurons by a spike phase code with 
respect to an underlying gamma oscillation , and we use an 
asymmetric STDP learning rule , referred to herein as a 
heterogeneous STDP ( HSTDP ) learning rule , to modify 
MC - to - GC synaptic weights . 
[ 0374 ) Heterogeneity in model parameters . Heterogeneity 
is abundant in biology ; information is commonly repre 
sented in populations of neurons with similar but not iden 
tical properties . This is often elided as unavoidable biologi 
cal variability , but may in fact serve an important 
computational purpose . For example , recent experimental 
studies in the retina have shown that the population code 
exhibited by a heterogeneous ensemble of neurons is con 
siderably more reliable than that of a homogeneous 

ensemble . To assess and take advantage of this potential , we 
here incorporate network heterogeneities in three ways : 
[ 0375 ] 1. Nonuniform sensor scaling : This process is part 
of the sensor scaling preprocessor described above , 
employed to ensure feature value differences among inputs . 
[ 0376 ] 2. Heterogeneous duplication : The heterogeneous 
duplication preprocessor fans out a common input stream to 
a heterogeneous population of excitatory feedforward 
interneurons , which then deliver this input to n sister MCs 
via sparse random projections , as previously described in 
conjunction with FIG . 4 . 
[ 0377 ] 3. Model parameter heterogeneities : We assigned 
variable spiking thresholds to sister MCs and to GC 
interneurons . These partially redundant MC groups further 
enabled us to assign a wide range of MC - to - GC synaptic 
connection densities across the core learning network . 
Finally , the maximum permitted synaptic weights Wmax 
under the STDP rule were heterogeneous ; we refer to this 
overall rule as an hSTDP rule . These heterogeneities render 
the post - signal conditioning learning network more robust to 
statistically diverse datasets . 
[ 0378 ] Heterogeneous spike timing - dependent plasticity 
( hSTDP ) rule . Per this learning rule , MC - to - GC excitatory 
synaptic weights were potentiated when MC spikes pre 
ceded GC spikes ; otherwise these synapses were depressed . 
The hSTDP rule parameters ap , am , taup , taum , 
were tuned using a synthetic dataset , whereas the distribu 
tion of maximum synaptic weights w , was tuned only 
once using a validation set from Batch 1 of the UCSD 
chemosensor drift dataset . Training and testing with the 
additional datasets described herein also used this same 
instantiated , parameterized network . 
[ 0379 ] Additional aspects of the testing of the present 
embodiments using experimental datasets will now be 
described 
[ 0380 ] The results presented here were generated using a 
common network with all hyperparameters predetermined 
except for the number of columns and , in one case , the 
number of GC interneurons per sensor . The number of 
processing columns depended directly on the number of 
sensor inputs provided by the dataset ( input data dimension 
ality ) multiplied by the divergence ratio n of the heteroge 
neous duplication preprocessor ( held constant at 5 for all 
simulations herein ; FIG . 4 ) . Excitatory synaptic weights in 
the core network were plastic , governed by an hSTDP rule 
with fixed parameters as described above . 
[ 0381 ] UCSD gas sensor drift dataset . We first applied our 
algorithm to the publicly available UCSD gas sensor drift 
dataset , modestly reconfigured to assess online learning . The 
dataset contains 13910 measurements in total , taken from an 
array of 16 MOS chemosensors exposed to 6 gas - phase 
odorants presented across a substantial range of concentra 
tions ( 10-1000 ppmv ) . It should be noted that these data 
were gathered in ten batches over the course of three years ; 
owing to sensor drift , the chemosensors ' responses to odor 
ants changed drastically over this timescale , presenting a 
challenge to classification algorithms that model or other 
wise compensate for that drift . For the present embodiments , 
we used data from Batches 1 ( sensor age 1-2 months ) and 7 
( sensor age 21 months ) . As in previous work , we used only 
the peak sensor responses ( 16 out of the available 128 
features in the dataset ) for training and testing . To better 
assess online learning , we reconfigured the dataset into six 
groups corresponding to the six gas types , and trained the 
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network with data from each of these six groups separately , 
in order . Consequently , each training set comprised 1-10 
samples ( for 1 - shot through 10 - shot learning , respectively ) 
of the same odorant , at randomly selected concentrations . 
After training on each odorant group , we tested all six 
odorants ( at randomly selected concentrations ) before pro 
ceeding to train the next group in the list , until the network 
had learned all six odorants . Testing an odorant on which the 
network had not yet been trained produced the classification 
result “ none of the above ” —an important capability for 
“ learning in the wild , ” wherein many presented odorants 
would be unfamiliar and should not be forced incorrectly 
into existing classes . For sensor scaling and parameter 
tuning for this and all subsequent data sets , we used 10 % of 
the Batch 1 data as a validation set . The six odorant groups , 
in the order of training , included ammonia ( group 1 ) , 
acetaldehyde ( group 2 ) , acetone ( group 3 ) , ethylene ( group 
4 ) , ethanol ( group 5 ) , and toluene ( group 6 ) . 
[ 0382 ] Forest type spectral mapping dataset . This dataset 
is designed to identify forest types in Japan using spectral 
data from ASTER satellite imagery . Each of the 326 samples 
includes 27 spectral features . We used 10 % of the data as a 
validation set for preprocessor scaling . Because the dataset 
included negative values , we also , prior to sensor scaling , 
subtracted the minimum values of each feature ( as obtained 
from the validation set ) to render most feature values 
positive ; any remaining negative data points were clipped to 
zero . To better assess online learning , we split the dataset 
into 4 groups corresponding to the four forest type classes , 
and trained with each of these groups in sequence : Sugi 
( group 1 ) , Hinoki ( group 2 ) , Mixed deciduous ( group 3 ) , 
Other ( group 4 ) . 
[ 0383 ] Species - specific anuran call dataset . This dataset 
includes acoustic features ( mel frequency cepstral coeffi 
cients , MFCCs ) extracted from the call syllables of 10 
different frog and toad species , recorded in the wild in Brazil 
and Argentina . The dataset includes 7195 samples , with each 
sample comprising 22 MFCC features ( values between – 1 
and 1 ) , and exhibits significant class imbalance ; i.e. , the 
numbers of samples corresponding to each class ( species ) 
differ substantially . To make all data samples positive , we 
shifted each value by +1 so that each MFCC feature was in 
the range 0 to 2 . 
[ 0384 ] This dataset , uniquely among those tested , also 
included multilabel , multiclass classification , enabling us to 
illustrate the algorithm's innate capacity for natural hierar 
chical representation . Specifically , while training was per 
formed using only species information ( 10 groups ) , we also 
measured the classification of calls into the correct anuran 
genus and family . Altogether , the 10 species in the dataset 
comprise 8 anuran genera within 4 families . 10 % of the data 
were retained as a validation set , although these data were 
not used because the feature range was already known to be 
between 0 and 2 and hence validation per se was not 
required . As above , to assess online learning , we split the 
dataset into 10 groups corresponding to the 10 species , and 
trained with each in series : Adenomera andre ( family Lep 
todactylidae , group 1 ) , Adenomera hylaedactylus ( family 
Leptodactylidae , group 2 ) , Ameerega trivittata ( family Den 
drobatidae , group 3 ) , Hyla minuta ( since reclassified as 
Dendropsophus minutus , family Hylidae , group 4 ) , Hypsi 
boas cinerascens ( family Hylidae , group 5 ) , Hypsiboas 
cordobae ( family Hylidae , group 6 ) , Leptodactylus fuscus 
( family Leptodactylidae , group 7 ) , Osteocephalus oophagus 

( family Hylidae , group 8 ) , Rhinella granulosa ( family Bufo 
nidae , group 9 ) , Scinax ruber ( family Hylidae , group 10 ) . 
[ 0385 ] After training the network with standard heteroge 
neous parameters , and tuning the w max distribution on the 
validation set of batch 1 of the UCSD chemosensor drift 
dataset , we trained the algorithm and tested its performance 
on three different datasets as described above . Specifically , 
we measured ( 1 ) the goodness of preprocessing ( gp ) for each 
dataset , to assess how well the same instantiated , param 
eterized network would operate across a statistically diverse 
range of inputs , and ( 2 ) an interim estimate of classification 
performance based on a thresholded Hamming distance 
between activated ensembles in the interneuron representa 
tion , omitting the recurrent feedback loop of the full model , 
as illustrated in FIG . 12. The latter measure is used in the 
present embodiments in order to illustrate the importance of 
signal conditioning , and generally should not be used as a 
benchmark for the performance of illustrative embodiments 
of the full algorithm , which classifies signals successfully 
under high levels of synthetic impulse noise , as previously 
described herein . 
[ 0386 ] An important feature for present purposes in the 
FIG . 12 embodiment is the uniformity of interneuron 
recruitment levels across a statistically diverse set of raw 
input signals , as assessed by Sp . Direct inputs from deployed 
sensors differ substantially . As the distribution of response 
amplitudes across a sensor array strongly affects the efficacy 
of interneuron recruitment in this framework , and interneu 
ron recruitment profiles substantially determine learning and 
classification performance , input patterns in illustrative 
embodiments are transformed to exhibit a relatively consis 
tent statistical structure in order to avoid the need to retune 
network parameters , and hence enable “ learning in the 
wild . " 
[ 0387 ] To assess preprocessor efficacy , we first imple 
mented a 16 - column network including 16 principal neurons 
( e.g. , MCs ) and 3200 inhibitory interneurons ( e.g. , GCs ) , 
and presented this network with Batch 1 data from the 
UCSD sensor drift dataset . Interneuron recruitment into the 
active ensemble by these raw sensor inputs ( after being 
linearly scaled by a factor of 5x10-5 ) differed substantially 
among samples and was zero for some lower - concentration 
samples , resulting in a gy value of zero . Subsequent prepro 
cessor stages regularize the distribution of input amplitudes 
and improve interneuron recruitment uniformity as reflected 

> 

by Sp 

uni uni 

[ 0388 ] Sensor scaling . Heterogeneous sensor arrays 
require sensor - specific rescaling to a common range so that 
sensors producing the largest output ranges do not inappro 
priately dominate network operations . Accordingly , in the 
first preprocessing step , we scaled both the training set and 
the test set by the maximum observed sensor responses 
determined from the 10 % validation set of Batch 1 ( uniform 
sensor scaling ) . We then further scaled all inputs by an 
equidimensional uniform vector v where vum : E [ 0.5 , 1.0 ] 
( nonuniform sensor scaling ) . Sensor response profiles 
became more comparable in amplitude , but still exhibit 
concentration - dependent activation profiles and less uniform 
interneuron recruitment . 
[ 0389 ] Unsupervised intensity normalization . Distinguish 
ing concentration differences from genuine quality differ 
ences in the biological system ( concentration tolerance ) 
depends in part on a global inhibitory feedback mechanism 
instantiated in the MOB glomerular layer . We applied this 
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normalization operation to the output of the sensor scaling 
preprocessor . The diverse sensor response profiles observed 
for the same gas types arise from concentration differences ; 
this preprocessor substantially eliminates those within - type 
differences . Notably , this step removes the need to train the 
algorithm with multiple concentrations of a given gas type , 
enabling generalization beyond experience in the concen 
tration domain . 
[ 0390 ) Heterogeneous duplication . In this step , the output 
of the intensity normalization preprocessor first is projected 
to a higher dimension in a column - specific manner by 
duplicating each output onto m feedforward excitatory 
interneurons with heterogeneous properties and then ran 
domly connecting those interneurons to n principal neurons 
( e.g. , MCs ) , thereby multiplying the number of columns of 
the subsequent core learning network by a factor of n 
( column duplication ) . In the present simulations , m = n = 5 
( FIG . 4 ) . After applying this preprocessing step , sensor 
response distributions become regularized and interneuron 
recruitment becomes substantially uniform across samples , 
exhibiting a of 0.94 for Batch 1 data . It should be noted 
that this transformation occurs in a naturally online manner , 
without destroying inherent similarity relationships among 
data samples or reducing test set classification performance . 
[ 0391 ] These sequential preprocessor steps , which we 
refer to collectively as signal conditioning , ensure that 
statistically diverse inputs are transformed so as to recruit 
comparable numbers of interneurons , and consequently can 
be effectively learned and classified by the same instantiated , 
parameterized network . 
[ 0392 ] UCSD gas sensor drift . Using these preprocessors , 
we tested the “ learning in the wild ” capability of our 
feedforward learning network , first using Batch 1 data , and 
then , without changing any network parameters , Batch 7 
data . We first trained the network on raw sensor data from 
Batch 1 using one - shot learning with odorant concentration 
uncontrolled . In total , the training set constituted 1.35 % of 
the dataset . As noted above , we trained on each group 
( odorant type ) in sequence , testing performance on all six 
groups at each step ( with odorants from untrained groups 
generating " none of the above ” classifications ) . Unsurpris 
ingly , performance deteriorated after training on two or more 
groups , with the average accuracy across all training stages 
being only 35.86 % . Following the same training procedure , 
but using a network incorporating the preprocessors and 
heterogeneities described above , we obtained a mean clas 
sification accuracy of 96.00 % . 
[ 0393 ] To assess the effects of heterogeneity per se , we 
next trained a separate network , using the same parameters 
and including the three preprocessors , but excluding param 
eter heterogeneity . Specifically , this exclusion implied : 
[ 0394 ] 1. No modulation of sensor scaling parameters by 
an equidimensional random vector . 
[ 0395 ] 2. No heterogeneity in the parameters of feedfor 
ward interneurons . 
[ 0396 ] 3. No heterogeneity in core learning network 
parameters . 
[ 0397 ] In this scenario , the average performance across all 
6 groups dropped to 89.66 % , largely owing to performance 
reductions in later - trained groups . Because of the generally 
high performance on Batch 1 data , we did not also analyze 
performance with multiple - shot learning . 
[ 0398 ] Later batches in the UCSD dataset exhibited 
responses to odorants that differed sharply from those in 

earlier batches , owing to gradual sensor contamination and 
other forms of drift . Because the practical goal of " learning 
in the wild ” is to enable the same instantiated network to 
operate effectively on statistically diverse datasets , we 
trained the same network ( identical parameters ) on these 
Batch 7 data , which comprise odorant responses from the 
same sensors as in Batch 1 , but following 21 months of 
sensor degradation . It should be noted that the sequentially 
applied preprocessors , with heterogeneity , regularized the 
distribution of sensor input amplitudes to a form consistent 
with that of the processed Batch 1 data , resulting in a 
uniform recruitment of interneurons across samples and 
concentrations . 
[ 0399 ] We trained this network using one - shot learning of 
randomly selected Batch 7 samples ( concentrations uncon 
trolled ) , using the same procedures as for Batch 1. As with 
Batch 1 , performance dropped rapidly as additional groups 
were learned ; the average performance across all stages of 
learning was 42.42 % , with a training set comprising 0.17 % 
of the data . After applying the three preprocessors , including 
heterogeneities , average performance improved to 81.42 % . 
Omitting heterogeneity as above reduced average perfor 
mance to 77.38 % . 
[ 0400 ] We then trained the network using two - shot , five 
shot , and 10 shot online learning protocols . Training trials 
were grouped by odorant identity to demonstrate online 
learning ( i.e. , not intercalated ) ; concentrations again were 
uncontrolled . Classification accuracy improved substantially 
with the additional training yielding a maximum of 91.10 % 
average accuracy for 10 - shot training . The 10 - shot training 
set comprised 1.7 % of the Batch 7 data . 
[ 0401 ] Forest type spectral maps . Despite being inspired 
by the neural circuitry of the MOB , this network was 
expected to perform comparably well on datasets exhibiting 
structural properties similar to odorant stimuli : relatively 
high dimensionalities without low - dimensional structure 
such as that exhibited by visual images . To demonstrate this , 
and to test the capacities of our preprocessors to appropri 
ately regularize the statistical structures of non - chemosen 
sory datasets , we tested the same network utilized above on 
two additional datasets . 
[ 0402 ] We first tested the algorithm's performance on a 
27 - dimensional dataset of hyperspectral mapping data 
derived from ASTER satellite imagery , intended to identify 
four classes of Japanese forest cover . The network was 
expanded from 16 input dimensions ( for the UCSD dataset ) 
to 27 input columns to match dataset dimensionality , and 
included 200 granule cells per sensor . Despite substantial 
differences in signal statistics , our preprocessor cascade 
regularized the input distribution and achieved near - uniform 
interneuron recruitment . 

[ 0403 ] We trained the network with one shot of each of the 
four forest types ; the training set consequently comprised 
0.76 % of the data ( 4 of 523 samples ) , and the test set 
comprised 89.24 % ( 463 of 523 samples ) . The average 
classification accuracy across all groups was 82.03 % . 
Because of the special status of the “ other ” group , “ other ” 
classifications were pooled with “ none of the above ” clas 
sifications after the network was trained on all four groups . 
Performance improved after two- , five- , and 10 - shot train 
ing , reaching 88.39 % after ten - shot learning ( the training set 
here comprised 7.65 % of the data ) . When we omitted 
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network heterogeneities , as with the UCSD chemosensory 
dataset , the average accuracy for one - shot learning dropped 
from 82.03 % to 74.53 % . 
[ 0404 ] Species - specific anuran calls . Finally , we also 
tested the algorithm on an implicitly hierarchical classifica 
tion task using a dataset derived from a corpus of recordings 
of vocalizations from ten anuran species . As detailed above , 
the dataset comprised 22 mel frequency cepstral coefficients 
describing the acoustic features of these call syllables . We 
sought to identify the animal species , but also the genus and 
family , associated with each call . To do this , we deployed a 
network with hyperparameters identical to those used in 
prior datasets , with two exceptions . First , the network was 
necessarily sized for the 22 input dimensions of the dataset . 
Second , the number of interneurons was expanded to 300 
per sensor ; this was necessary in order to adequately learn all 
ten classes without the ANE function of the fully intact 
network described in conjunction with FIG . 2. As with the 
earlier datasets , preprocessing yielded a consistent statistical 
distribution of input amplitudes and a near - uniform recruit 
ment of interneurons . 
[ 0405 ] One - shot online learning of the ten groups ( spe 
cies ) in this dataset yielded somewhat poorer classification 
accuracy than in the previous datasets tested ; the accuracy 
across groups averaged 75.72 % , with the training set size 
comprising just 0.14 % of the dataset ( 10 of 7195 samples ) . 
Expanding to two- and five - shot training produced little 
improvement . However , expansion to 10 - shot training 
improved classification accuracy to 93.25 % , with the train 
ing set comprising 1.39 % of the data ( 100 of 7195 samples ) . 
Removing parameter heterogeneity reduced 10 - shot classi 
fication performance to 90.54 % . 
[ 0406 ] Finally , we assessed classification performance 
with respect to the eight anuran genera and four families 
embedding the ten species on which the network was 
trained . No additional training or network design was per 
formed ; output was simply reclassified with respect to these 
higher cladistic levels . Performance on this classification 
task largely tracked that of classifying by species , with 
accuracy increasing substantially given 10 - shot training and 
being modestly impaired by the removal of network hetero 
geneity . This implicit capacity to respect hierarchical simi 
larity relationships is a substantial benefit of the generalized , 
similarity - representing variant of this algorithm as described 
herein . 
[ 0407 ] Some “ learning in the wild ” embodiments herein 
illustratively comprise a set of capacities for artificial net 
works that reflect the performance of biological systems 
operating in natural environments . Most of the difficult 
challenges in the “ learning in the wild ” context arise from a 
sharply limited ability to regulate the stimuli presented by 
the external environment , whether in their unpredictable 
diversity , their interference with one another , or their intrin 
sic variances . A given illustrative embodiment disclosed 
herein has one or more of the following advantageous 
features : 
[ 0408 ] 1. Robust to " wild , ” poorly - matched inputs without 
resorting to hyperparameter re - tuning . 
[ 0409 ] 2. Robust to environmental and stimulus variance , 
including unpredictable stimulus intensities ( e.g. , odorant 
concentrations ) , other forms of stimulus heterogeneity , and 
the effects of environmental temperature and humidity . 
[ 0410 ] 3. Exhibits concentration tolerance where appro 
priate , and also provide an estimate of concentration . 

[ 0411 ] 4. Robust to missing or noisy sensor data , and to 
unlabeled training sets . 
[ 0412 ] 5. Exhibits rapid , semi - supervised or unsupervised , 
one- or few - shot learning of novel stimuli . 
[ 0413 ] 6. Supports online learning ( no catastrophic for 
getting , no need to store trained data ) . 
[ 0414 ] 7. Adapts to sensor drift owing to time and / or 
contamination . 
[ 0415 ] 8. Provides a “ none of the above " option during 
classification ( classifier confidence ) . 
[ 0416 ] 9. Identifies the signatures of known inputs despite 
substantial interference from background stimuli ( whether 
previously or simultaneously delivered ) . 
[ 0417 ] Some embodiments disclosed herein exhibit all or 
a majority of these advantageous properties . For example , in 
illustrative embodiments , we have configured the network's 
rapid learning capabilities to achieve a practical solution to 
the problem of sensor drift and generalized the algorithm to 
embed an explicit representation of similarity so as to enable 
support for hierarchical clustering . A preliminary example of 
this capacity is illustrated here in the classification of anuran 
calls with respect to species , genus , and family . This gen 
eralized implementation of the algorithm , however , becomes 
necessarily more sensitive to the statistical structure of 
sensory inputs . We here have outlined a signal conditioning 
solution in which wild sensory inputs are regularized by a 
series of preprocessors modeled on the features and circuits 
of the MOB glomerular layer . Consequently , a single instan 
tiated network is capable of productively learning and 
classifying widely heterogeneous sets of input stimuli . 
[ 0418 ] Data normalization in some form is a common 
procedure in non - SNNs . In some embodiments herein , we 
implement a data regularization procedure for SNNs that is 
compatible with rapid learning , localized brain - mimetic 
computational principles , and “ learning in the wild ” con 
straints . Notably , under these constraints , samples may be 
rare , and batch sizes small , such that aggregate data features 
such as means and standard deviations are difficult to 
ascertain . We further ensure that single instantiated networks 
could effectively learn and classify a wide diversity of 
datasets . The successive preprocessors described herein 
transformed four different datasets with different patterns of 
internal sample diversity into a common statistical form , 
such that the same network could effectively operate on 
them all without the need for hyperparameter retuning . 
[ 0419 ] The final preprocessor in the sequence , heteroge 
neous duplication ( FIG . 4 ) , is a statistical regularization 
algorithm based on the properties of sparse random projec 
tions . Interestingly , its implementation closely adheres to an 
anatomical circuit motif within MOB intraglomerular net 
works , to which function has yet to be attributed . The need 
for statistical regularization of input patterns in this way has 
not yet been recognized in the literature on biological 
olfaction ( except in the specific case of concentration ) , so it 
is an interesting possibility that this network motif may 
present a solution to a previously unrecognized neurophysi 
ological problem . 
[ 0420 ] The simulations described in conjunction with the 
present embodiments concern the initial preprocessing steps 
and first feed - forward projection of the biomimetic algo 
rithm ( FIG . 12 ; corresponding to the EPLff component 
described previously ) , omitting the dynamical spike timing 
based attractor functionality of the full network in favor of 
a closer examination of preprocessor properties . Accord 
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ingly , the metrics of greatest interest are the uniformity of 
interneuron recruitment and a preliminary estimate of clas 
sification performance based on the Hamming distances 
calculated between interneuronal activation patterns . The 
latter metric , in particular , should not be confused with the performance of a fully implemented brain - mimetic imple 
mentation , of the type described elsewhere herein ; obtaining 
optimized classification accuracy was not the primary pur 
pose of this reduced network . Among other limitations , the 
Hamming distance metric cannot accommodate the ANE 
method , by which new interneurons are dynamically added 
to the network after the fashion of adult neurogenesis in the 
MOB , as described elsewhere herein , because ANE alters 
the dimensionality of the space in which the Hamming 
distance is calculated . Owing to the absence of ANE , the 
present network's performance begins to drop off as the 
number of learned stimuli increases . The average perfor 
mance values , accordingly , are underestimates of the per 
formance of the fully intact network described in conjunc 
tion with FIG . 2 . 
[ 0421 ] The present embodiments illustrate that a series of 
preprocessing steps , modeled after particular attributes of 
the mammalian MOB , successfully conditions statistically 
diverse input signals from both chemosensory and non 
chemosensory sources , such that a single instantiated , 
parameterized network can rapidly learn and successfully 
classify these signals . We have termed this robustness to 
uncontrolled environmental variance “ learning in the wild . ” 
This is an important capability for field - deployed devices 
expected to process and identify similarly diverse sensory 
signatures within unregulated environments . Moreover , as 
with the intact network described in conjunction with FIG . 
2 , these preprocessor algorithms were implemented using 
localized computational and plasticity rules and hence are 
amenable to implementation on neuromorphic hardware 
platforms . 
[ 0422 ] It should also be understood that the particular 
arrangements shown and described in conjunction with 
FIGS . 1 through 12 are presented by way of illustrative 
example only , and numerous alternative embodiments are 
possible . The various embodiments disclosed herein should 
therefore not be construed as limiting in any way . Numerous 
alternative arrangements of neuromorphic algorithms can be 
utilized in other embodiments . Those skilled in the art will 
also recognize that alternative processing operations and 
associated system entity configurations can be used in other 
embodiments . 
[ 0423 ] It is therefore possible that other embodiments may 
include additional or alternative system elements , relative to 
the entities of the illustrative embodiments . Accordingly , the 
particular system configurations and associated algorithm 
implementations can be varied in other embodiments . 
[ 0424 ] A given processing device or other component of 
an information processing system as described herein is 
illustratively configured utilizing a corresponding process 
ing device comprising a processor coupled to a memory . The 
processor executes software program code stored in the 
memory in order to control the performance of processing 
operations and other functionality . The processing device 
also comprises a network interface that supports communi 
cation over one or more networks . 
[ 0425 ] The processor may comprise , for example , a neu 
romorphic processor , a microprocessor , an ASIC , an FPGA , 
a CPU , an ALU , a GPU , a DSP , or other similar processing 

device component , as well as other types and arrangements 
of processing circuitry , in any combination . For example , a 
given processing device as disclosed herein can be imple 
mented using such circuitry . 
[ 0426 ] The memory stores software program code for 
execution by the processor in implementing portions of the 
functionality of the processing device . A given such memory 
that stores such program code for execution by a corre 
sponding processor is an example of what is more generally 
referred to herein as a processor - readable storage medium 
having program code embodied therein , and may comprise , 
for example , electronic memory such as SRAM , DRAM or 
other types of random access memory , ROM , flash memory , 
magnetic memory , optical memory , or other types of storage 
devices in any combination . 
[ 0427 ] As mentioned previously , articles of manufacture 
comprising such processor - readable storage media are con 
sidered embodiments of the invention . The term " article of 
manufacture ” as used herein should be understood to 
exclude transitory , propagating signals . Other types of com 
puter program products comprising processor - readable stor 
age media can be implemented in other embodiments . 
[ 0428 ] In addition , embodiments of the invention may be 
implemented in the form of integrated circuits comprising 
processing circuitry configured to implement processing 
operations associated with implementation of a neuromor 
phic algorithm . 
[ 0429 ] An information processing system as disclosed 
herein may be implemented using one or more processing 
platforms , or portions thereof . 
[ 0430 ] For example , one illustrative embodiment of a 
processing platform that may be used to implement at least 
a portion of an information processing system comprises 
cloud infrastructure including virtual machines implemented 
using a hypervisor that runs on physical infrastructure . Such 
virtual machines may comprise respective processing 
devices that communicate with one another over one or 
more networks . 
[ 0431 ] The cloud infrastructure in such an embodiment 
may further comprise one or more sets of applications 
running on respective ones of the virtual machines under the 
control of the hypervisor . It is also possible to use multiple 
hypervisors each providing a set of virtual machines using at 
least one underlying physical machine . Different sets of 
virtual machines provided by one or more hypervisors may 
be utilized in configuring multiple instances of various 
components of the information processing system . 
[ 0432 ] Another illustrative embodiment of a processing 
platform that may be used to implement at least a portion of 
an information processing system as disclosed herein com 
prises a plurality of processing devices which communicate 
with one another over at least one network . Each processing 
device of the processing platform is assumed to comprise a 
processor coupled to a memory . 
[ 0433 ] Again , these particular processing platforms are 
presented by way of example only , and an information 
processing system may include additional or alternative 
processing platforms , as well as numerous distinct process 
ing platforms in any combination , with each such platform 
comprising one or more computers , servers , storage devices 
or other processing devices . 
[ 0434 ] A given processing platform implementing a neu 
romorphic algorithm as disclosed herein can alternatively 
comprise a single processing device , such as a computer , 

? 
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performing at least one automated action based at least in 
part on the output obtained from the core portion of the 
neural network ; 

wherein the method is performed by at least one process 
ing device comprising a processor coupled to a 
memory . 

2. The method of claim 1 wherein the neural network 
comprises a spiking neural network ( SNN ) . 

3. The method of claim 2 wherein the SNN is configured 
to provide spike timing for the feedback loop with inhibition 
delaying the spike timing and relatively strong sensory input 
advancing the spike timing . 

4. The method of claim 3 wherein the feedback loop is 
configured to adapt synaptic weights of the core network and 
operation of the feedback loop in adapting the synaptic 
weights is controlled based at least in part on spike timing 
information represented by relative timing of spikes for at 
least a portion of the principal neurons and the interneurons . 

5. The method of claim 1 at least a subset of the principal 
neurons of the core portion of the neural network are 
configured to represent respective mitral cells of an olfactory 
learning system and at least a subset of the interneurons of 
the core portion of the neural network are configured to 
represent respective granule cells of the olfactory learning 
system . 

6. The method of claim 1 further comprising adaptively 
expanding the neural network by incorporating additional 
interneurons into to one or more of : 

( i ) at least one of the one or more preprocessors of the 
neural network ; and 

( ii ) the core portion of the neural network . 
7. The method of claim 6 wherein the additional interneu 

rons are incorporated into the core portion of the neural 
network in a manner that does not disrupt existing learned 
sensory patterns of the core portion of the neural network . 

8. The method of claim 1 wherein obtaining input data 
comprises obtaining the input data from one or more sen 

a 

mobile telephone or handheld sensor device , that imple 
ments not only the neuromorphic algorithm but also a sensor 
array and one or more controlled components . It is also 
possible in some embodiments that one or more such system 
elements can run on or be otherwise supported by cloud 
infrastructure or other types of virtualization infrastructure . 
[ 0435 ] It should therefore be understood that in other 
embodiments different arrangements of additional or alter 
native elements may be used . At least a subset of these 
elements may be collectively implemented on a common 
processing platform , or each such element may be imple 
mented on a separate processing platform . 
[ 0436 ] Also , numerous other arrangements of computers , 
servers , storage devices or other components are possible in 
an information processing system . Such components can 
communicate with other elements of the information pro 
cessing system over any type of network or other commu 
nication media . 
[ 0437 ] As indicated previously , components of the system 
as disclosed herein can be implemented at least in part in the 
form of one or more software programs stored in memory 
and executed by a processor of a processing device . For 
example , certain functionality disclosed herein can be 
implemented at least in part in the form of software . 
[ 0438 ] The particular configurations of information pro 
cessing systems described herein are exemplary only , and a 
given such system in other embodiments may include other 
elements in addition to or in place of those specifically 
shown , including one or more elements of a type commonly 
found in a conventional implementation of such a system . 
[ 0439 ] For example , in some embodiments , an informa 
tion processing system may be configured to utilize the 
disclosed techniques to provide additional or alternative 
functionality in other contexts . 
[ 0440 ] It should again be emphasized that the embodi 
ments of the invention as described herein are intended to be 
illustrative only . Other embodiments of the invention can be 
implemented utilizing a wide variety of different types and 
arrangements of information processing systems , networks 
and processing devices than those utilized in the particular 
illustrative embodiments described herein , and in numerous 
alternative processing contexts . In addition , the particular 
assumptions made herein in the context of describing certain 
embodiments need not apply in other embodiments . These 
and numerous other alternative embodiments will be readily 
apparent to those skilled in the art . 

1. A computer - implemented method of training a neural 
network to recognize sensory patterns , the method compris 
ing : 

obtaining input data ; 
preprocessing the input data in one or more preprocessors 

of the neural network ; 
applying the preprocessed input data to a core portion of 

the neural network , the core portion of the neural 
network comprising a plurality of principal neurons and 
a plurality of interneurons , the core portion of the 
neural network implementing a feedback loop from the 
interneurons to the principal neurons that supports 
persistent unsupervised differentiation of multiple 
learned sensory patterns over time ; 

obtaining an output from the core portion of the neural 
network ; and 

a 

sors . 

9. The method of claim 1 wherein a given one of the one 
or more preprocessors of the neural network comprises a 
plurality of input nodes each adapted to receive input data 
associated with a different data source . 

10. The method of claim 9 wherein the input nodes are 
adapted to receive input data from respective different 
sensors . 

11. The method of claim 9 wherein the given preprocessor 
of the neural network comprises a heterogeneous duplication 
preprocessor configured to statistically regularize diverse 
sensory inputs of the obtained input data . 

12. The method of claim 9 wherein the given preprocessor 
of the neural network further comprises for a particular one 
of the input nodes : 

a plurality of excitatory feed - forward interneurons each 
coupled to the particular input node ; and 

a plurality of principal neurons each coupled to one or 
more of the excitatory feed - forward interneurons . 

13. The method of claim 1 wherein the core portion of the 
neural network comprises a synaptic interaction matrix of 
the principal neurons and the interneurons in which an 
n - dimensional representation in the principal neurons is 
mapped to an m - dimensional representation in the interneu 
rons , where m >> n . 

14. The method of claim 1 wherein the neural network 
further comprises a neuromodulatory dynamic state trajec 
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tory configured to adjust neuronal properties systematically 
and select a particular outcome . 

15. The method of claim 1 wherein the neural network 
further comprises an inference network arranged between 
the principal neurons and the interneurons and configured to 
deliver input to the interneurons that influences how the 
interneurons affect the principal neurons such that the prin 
cipal neurons thereby exert different effects on the interneu 
rons and the inference network . 

16. The method of claim 1 wherein multiple cycles of the 
feedback loop are executed within a single cycle of a data 
sampling loop utilized in obtaining the input data . 

17. The method of claim 1 wherein the feedback loop is 
configured to control delivery of synaptic inhibition infor 
mation from the interneurons of the core portion back to the 
principal neurons of the core portion based at least in part on 
synaptic excitatory information delivered from the principal 
neurons to the interneurons . 

18. A system comprising : 
at least one processing device comprising a processor 

coupled to a memory ; 
the processing device being configured : 
to obtain input data ; 
to preprocess the input data in one or more preprocessors 

of a neural network ; 
to apply the preprocessed input data to a core portion of 

the neural network , the core portion of the neural 
network comprising a plurality of principal neurons and 
a plurality of interneurons , the core portion of the 
neural network implementing a feedback loop from the 
interneurons to the principal neurons that supports 
persistent unsupervised differentiation of multiple 
learned sensory patterns over time ; 

to obtain an output from the core portion of the neural 
network ; and 

to perform at least one automated action based at least in 
part on the output obtained from the core portion of the 
neural network . 

19. The system of claim 18 wherein the processing device 
is further configured to adaptively expand the neural net 
work by incorporating additional interneurons into one or 
more of : 

( i ) at least one of the one or more preprocessors of the 
neural network ; and 

( ii ) the core portion of the neural network . 
20. The system of claim 18 wherein the core portion of the 

neural network comprises a synaptic interaction matrix of 
the principal neurons and the interneurons in which an 
n - dimensional representation in the principal neurons is 
mapped to an m - dimensional representation in the interneu 
rons , where m >> n . 

21. A computer program product comprising a non 
transitory processor - readable storage medium having stored 
therein program code of one or more software programs , 
wherein the program code , when executed by at least one 
processing device comprising a processor coupled to a 
memory , causes the processing device : 

to obtain input data ; 
to preprocess the input data in one or more preprocessors 

of a neural network ; 
to apply the preprocessed input data to a core portion of 

the neural network , the core portion of the neural 
network comprising a plurality of principal neurons and 

a plurality of interneurons , the core portion of the 
neural network implementing a feedback loop from the 
interneurons to the principal neurons that supports 
persistent unsupervised differentiation of multiple 
learned sensory patterns over time ; 

to obtain an output from the core portion of the neural 
network ; and 

to perform at least one automated action based at least in 
part on the output obtained from the core portion of the 
neural network . 

22. The computer program product of claim 21 wherein 
the program code when executed further causes the process 
ing device to adaptively expand the neural network by 
incorporating additional interneurons into one or more of : 

( i ) at least one of the one or more preprocessors of the 
neural network ; and 

( ii ) the core portion of the neural network . 
23. The computer program product of claim 21 wherein 

the core portion of the neural network comprises a synaptic 
interaction matrix of the principal neurons and the interneu 
rons in which an n - dimensional representation in the prin 
cipal neurons is mapped to an m - dimensional representation 
in the interneurons , where m >> n . 

24. The method of claim 1 wherein the one or more 
preprocessors of the neural network comprise at least one 
layer that includes a plurality of neurons of a first type and 
a plurality of neurons of a second type different than the first 
type , and further wherein at least a subset of the neurons of 
the second type are configured to inhibit at least a subset of 
the neurons of the first type . 

25. The method of claim 24 wherein said at least one layer 
is configured to represent at least one glomerular layer of an 
olfactory learning system , the neurons of the first type are 
configured to represent respective external tufted ( ET ) cells 
of the olfactory learning system , and the neurons of the 
second type are configured to represent respective periglom 
erular ( PG ) cells of the olfactory learning system . 

26. The method of claim 24 wherein the inhibition of at 
least a subset of the neurons of the first type by at least a 
subset of the neurons of the second type comprises a graded 
lateral inhibition . 

27. The method of claim 1 wherein the one or more 
preprocessors of the neural network comprise at least one 
concentration tolerance preprocessor configured to limit 
concentration - specific variance in outputs generated in 
response to respective different instances of input data . 

28. The method of claim 1 wherein the one or more 
preprocessors of the neural network comprise at least one 
sensor scaling preprocessor configured to rescale outputs of 
multiple heterogeneous sensors such that corresponding 
inputs to the core portion of the neural network are statis 
tically similarly scaled . 

29. The method of claim 1 further comprising adding one 
or more neurons to the neural network without disrupting an 
existing learned pattern obtained through previous training 
of the neural network . 

30. The method of claim 1 wherein the neural network is 
configured to implement online learning in which one or 
more new patterns are learned with a size of the neural 
network dynamically expanded , relative to a previous size of 
the neural network , without impairing one or more previous 
learned patterns of the neural network . 


